aboutsummaryrefslogtreecommitdiff
path: root/source-common/SmallVector.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'source-common/SmallVector.hpp')
-rw-r--r--source-common/SmallVector.hpp1332
1 files changed, 0 insertions, 1332 deletions
diff --git a/source-common/SmallVector.hpp b/source-common/SmallVector.hpp
deleted file mode 100644
index e33a25d..0000000
--- a/source-common/SmallVector.hpp
+++ /dev/null
@@ -1,1332 +0,0 @@
-// Obtained from https://github.com/llvm/llvm-project/blob/main/llvm/include/llvm/ADT/SmallVector.h
-// commit 4b82bb6d82f65f98f23d0e4c2cd5297dc162864c
-// adapted in code style and utilities to fix this project
-
-//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-///
-/// \file
-/// This file defines the SmallVector class.
-///
-//===----------------------------------------------------------------------===//
-
-#pragma once
-
-#include <algorithm>
-#include <cassert>
-#include <cstddef>
-#include <cstdlib>
-#include <cstring>
-#include <functional>
-#include <initializer_list>
-#include <iterator>
-#include <limits>
-#include <memory>
-#include <new>
-#include <type_traits>
-#include <utility>
-
-#ifdef _MSC_VER
-# pragma warning(push)
-# pragma warning(disable : 4267) // The compiler detected a conversion from size_t to a smaller type.
-#endif
-
-#if __has_builtin(__builtin_expect) || defined(__GNUC__)
-# define LLVM_LIKELY(EXPR) __builtin_expect((bool)(EXPR), true)
-# define LLVM_UNLIKELY(EXPR) __builtin_expect((bool)(EXPR), false)
-#else
-# define LLVM_LIKELY(EXPR) (EXPR)
-# define LLVM_UNLIKELY(EXPR) (EXPR)
-#endif
-
-template <typename IteratorT>
-class iterator_range;
-
-/// This is all the stuff common to all SmallVectors.
-///
-/// The template parameter specifies the type which should be used to hold the
-/// Size and Capacity of the SmallVector, so it can be adjusted.
-/// Using 32 bit size is desirable to shrink the size of the SmallVector.
-/// Using 64 bit size is desirable for cases like SmallVector<char>, where a
-/// 32 bit size would limit the vector to ~4GB. SmallVectors are used for
-/// buffering bitcode output - which can exceed 4GB.
-template <class Size_T>
-class SmallVectorBase {
-protected:
- void* BeginX;
- Size_T Size = 0, Capacity;
-
- /// The maximum value of the Size_T used.
- static constexpr size_t SizeTypeMax() {
- return std::numeric_limits<Size_T>::max();
- }
-
- SmallVectorBase() = delete;
- SmallVectorBase(void* FirstEl, size_t TotalCapacity)
- : BeginX(FirstEl), Capacity(TotalCapacity) {}
-
- /// This is a helper for \a grow() that's out of line to reduce code
- /// duplication. This function will report a fatal error if it can't grow at
- /// least to \p MinSize.
- void* mallocForGrow(size_t MinSize, size_t TSize, size_t& NewCapacity);
-
- /// This is an implementation of the grow() method which only works
- /// on POD-like data types and is out of line to reduce code duplication.
- /// This function will report a fatal error if it cannot increase capacity.
- void grow_pod(void* FirstEl, size_t MinSize, size_t TSize);
-
-public:
- size_t size() const { return Size; }
- size_t capacity() const { return Capacity; }
-
- [[nodiscard]] bool empty() const { return !Size; }
-
-protected:
- /// Set the array size to \p N, which the current array must have enough
- /// capacity for.
- ///
- /// This does not construct or destroy any elements in the vector.
- void set_size(size_t N) {
- assert(N <= capacity());
- Size = N;
- }
-};
-
-template <class T>
-using SmallVectorSizeType =
- typename std::conditional<sizeof(T) < 4 && sizeof(void*) >= 8, uint64_t, uint32_t>::type;
-
-/// Figure out the offset of the first element.
-template <class T, typename = void>
-struct SmallVectorAlignmentAndSize {
- alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof(
- SmallVectorBase<SmallVectorSizeType<T>>)];
- alignas(T) char FirstEl[sizeof(T)];
-};
-
-/// This is the part of SmallVectorTemplateBase which does not depend on whether
-/// the type T is a POD. The extra dummy template argument is used by ArrayRef
-/// to avoid unnecessarily requiring T to be complete.
-template <typename T, typename = void>
-class SmallVectorTemplateCommon
- : public SmallVectorBase<SmallVectorSizeType<T>> {
- using Base = SmallVectorBase<SmallVectorSizeType<T>>;
-
- /// Find the address of the first element. For this pointer math to be valid
- /// with small-size of 0 for T with lots of alignment, it's important that
- /// SmallVectorStorage is properly-aligned even for small-size of 0.
- void* getFirstEl() const {
- return const_cast<void*>(reinterpret_cast<const void*>(
- reinterpret_cast<const char*>(this) +
- offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)));
- }
- // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
-
-protected:
- SmallVectorTemplateCommon(size_t Size)
- : Base(getFirstEl(), Size) {}
-
- void grow_pod(size_t MinSize, size_t TSize) {
- Base::grow_pod(getFirstEl(), MinSize, TSize);
- }
-
- /// Return true if this is a smallvector which has not had dynamic
- /// memory allocated for it.
- bool isSmall() const { return this->BeginX == getFirstEl(); }
-
- /// Put this vector in a state of being small.
- void resetToSmall() {
- this->BeginX = getFirstEl();
- this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
- }
-
- /// Return true if V is an internal reference to the given range.
- bool isReferenceToRange(const void* V, const void* First, const void* Last) const {
- // Use std::less to avoid UB.
- std::less<> LessThan;
- return !LessThan(V, First) && LessThan(V, Last);
- }
-
- /// Return true if V is an internal reference to this vector.
- bool isReferenceToStorage(const void* V) const {
- return isReferenceToRange(V, this->begin(), this->end());
- }
-
- /// Return true if First and Last form a valid (possibly empty) range in this
- /// vector's storage.
- bool isRangeInStorage(const void* First, const void* Last) const {
- // Use std::less to avoid UB.
- std::less<> LessThan;
- return !LessThan(First, this->begin()) && !LessThan(Last, First) &&
- !LessThan(this->end(), Last);
- }
-
- /// Return true unless Elt will be invalidated by resizing the vector to
- /// NewSize.
- bool isSafeToReferenceAfterResize(const void* Elt, size_t NewSize) {
- // Past the end.
- if (LLVM_LIKELY(!isReferenceToStorage(Elt)))
- return true;
-
- // Return false if Elt will be destroyed by shrinking.
- if (NewSize <= this->size())
- return Elt < this->begin() + NewSize;
-
- // Return false if we need to grow.
- return NewSize <= this->capacity();
- }
-
- /// Check whether Elt will be invalidated by resizing the vector to NewSize.
- void assertSafeToReferenceAfterResize(const void* Elt, size_t NewSize) {
- assert(isSafeToReferenceAfterResize(Elt, NewSize) &&
- "Attempting to reference an element of the vector in an operation "
- "that invalidates it");
- }
-
- /// Check whether Elt will be invalidated by increasing the size of the
- /// vector by N.
- void assertSafeToAdd(const void* Elt, size_t N = 1) {
- this->assertSafeToReferenceAfterResize(Elt, this->size() + N);
- }
-
- /// Check whether any part of the range will be invalidated by clearing.
- void assertSafeToReferenceAfterClear(const T* From, const T* To) {
- if (From == To)
- return;
- this->assertSafeToReferenceAfterResize(From, 0);
- this->assertSafeToReferenceAfterResize(To - 1, 0);
- }
- template <
- class ItTy,
- std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T*>::value,
- bool> = false>
- void assertSafeToReferenceAfterClear(ItTy, ItTy) {}
-
- /// Check whether any part of the range will be invalidated by growing.
- void assertSafeToAddRange(const T* From, const T* To) {
- if (From == To)
- return;
- this->assertSafeToAdd(From, To - From);
- this->assertSafeToAdd(To - 1, To - From);
- }
- template <
- class ItTy,
- std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T*>::value,
- bool> = false>
- void assertSafeToAddRange(ItTy, ItTy) {}
-
- /// Reserve enough space to add one element, and return the updated element
- /// pointer in case it was a reference to the storage.
- template <class U>
- static const T* reserveForParamAndGetAddressImpl(U* This, const T& Elt, size_t N) {
- size_t NewSize = This->size() + N;
- if (LLVM_LIKELY(NewSize <= This->capacity()))
- return &Elt;
-
- bool ReferencesStorage = false;
- int64_t Index = -1;
- if (!U::TakesParamByValue) {
- if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))) {
- ReferencesStorage = true;
- Index = &Elt - This->begin();
- }
- }
- This->grow(NewSize);
- return ReferencesStorage ? This->begin() + Index : &Elt;
- }
-
-public:
- using size_type = size_t;
- using difference_type = ptrdiff_t;
- using value_type = T;
- using iterator = T*;
- using const_iterator = const T*;
-
- using const_reverse_iterator = std::reverse_iterator<const_iterator>;
- using reverse_iterator = std::reverse_iterator<iterator>;
-
- using reference = T&;
- using const_reference = const T&;
- using pointer = T*;
- using const_pointer = const T*;
-
- using Base::capacity;
- using Base::empty;
- using Base::size;
-
- // forward iterator creation methods.
- iterator begin() { return (iterator)this->BeginX; }
- const_iterator begin() const { return (const_iterator)this->BeginX; }
- iterator end() { return begin() + size(); }
- const_iterator end() const { return begin() + size(); }
-
- // reverse iterator creation methods.
- reverse_iterator rbegin() { return reverse_iterator(end()); }
- const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
- reverse_iterator rend() { return reverse_iterator(begin()); }
- const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
-
- size_type size_in_bytes() const { return size() * sizeof(T); }
- size_type max_size() const {
- return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T));
- }
-
- size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
-
- /// Return a pointer to the vector's buffer, even if empty().
- pointer data() { return pointer(begin()); }
- /// Return a pointer to the vector's buffer, even if empty().
- const_pointer data() const { return const_pointer(begin()); }
-
- reference operator[](size_type idx) {
- assert(idx < size());
- return begin()[idx];
- }
- const_reference operator[](size_type idx) const {
- assert(idx < size());
- return begin()[idx];
- }
-
- reference front() {
- assert(!empty());
- return begin()[0];
- }
- const_reference front() const {
- assert(!empty());
- return begin()[0];
- }
-
- reference back() {
- assert(!empty());
- return end()[-1];
- }
- const_reference back() const {
- assert(!empty());
- return end()[-1];
- }
-};
-
-/// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put
-/// method implementations that are designed to work with non-trivial T's.
-///
-/// We approximate is_trivially_copyable with trivial move/copy construction and
-/// trivial destruction. While the standard doesn't specify that you're allowed
-/// copy these types with memcpy, there is no way for the type to observe this.
-/// This catches the important case of std::pair<POD, POD>, which is not
-/// trivially assignable.
-template <typename T, bool = (std::is_trivially_copy_constructible<T>::value) && (std::is_trivially_move_constructible<T>::value) && std::is_trivially_destructible<T>::value>
-class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
- friend class SmallVectorTemplateCommon<T>;
-
-protected:
- static constexpr bool TakesParamByValue = false;
- using ValueParamT = const T&;
-
- SmallVectorTemplateBase(size_t Size)
- : SmallVectorTemplateCommon<T>(Size) {}
-
- static void destroy_range(T* S, T* E) {
- while (S != E) {
- --E;
- E->~T();
- }
- }
-
- /// Move the range [I, E) into the uninitialized memory starting with "Dest",
- /// constructing elements as needed.
- template <typename It1, typename It2>
- static void uninitialized_move(It1 I, It1 E, It2 Dest) {
- std::uninitialized_copy(std::make_move_iterator(I),
- std::make_move_iterator(E),
- Dest);
- }
-
- /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
- /// constructing elements as needed.
- template <typename It1, typename It2>
- static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
- std::uninitialized_copy(I, E, Dest);
- }
-
- /// Grow the allocated memory (without initializing new elements), doubling
- /// the size of the allocated memory. Guarantees space for at least one more
- /// element, or MinSize more elements if specified.
- void grow(size_t MinSize = 0);
-
- /// Create a new allocation big enough for \p MinSize and pass back its size
- /// in \p NewCapacity. This is the first section of \a grow().
- T* mallocForGrow(size_t MinSize, size_t& NewCapacity) {
- return static_cast<T*>(
- SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow(
- MinSize, sizeof(T), NewCapacity));
- }
-
- /// Move existing elements over to the new allocation \p NewElts, the middle
- /// section of \a grow().
- void moveElementsForGrow(T* NewElts);
-
- /// Transfer ownership of the allocation, finishing up \a grow().
- void takeAllocationForGrow(T* NewElts, size_t NewCapacity);
-
- /// Reserve enough space to add one element, and return the updated element
- /// pointer in case it was a reference to the storage.
- const T* reserveForParamAndGetAddress(const T& Elt, size_t N = 1) {
- return this->reserveForParamAndGetAddressImpl(this, Elt, N);
- }
-
- /// Reserve enough space to add one element, and return the updated element
- /// pointer in case it was a reference to the storage.
- T* reserveForParamAndGetAddress(T& Elt, size_t N = 1) {
- return const_cast<T*>(
- this->reserveForParamAndGetAddressImpl(this, Elt, N));
- }
-
- static T&& forward_value_param(T&& V) { return std::move(V); }
- static const T& forward_value_param(const T& V) { return V; }
-
- void growAndAssign(size_t NumElts, const T& Elt) {
- // Grow manually in case Elt is an internal reference.
- size_t NewCapacity;
- T* NewElts = mallocForGrow(NumElts, NewCapacity);
- std::uninitialized_fill_n(NewElts, NumElts, Elt);
- this->destroy_range(this->begin(), this->end());
- takeAllocationForGrow(NewElts, NewCapacity);
- this->set_size(NumElts);
- }
-
- template <typename... ArgTypes>
- T& growAndEmplaceBack(ArgTypes&&... Args) {
- // Grow manually in case one of Args is an internal reference.
- size_t NewCapacity;
- T* NewElts = mallocForGrow(0, NewCapacity);
- ::new ((void*)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...);
- moveElementsForGrow(NewElts);
- takeAllocationForGrow(NewElts, NewCapacity);
- this->set_size(this->size() + 1);
- return this->back();
- }
-
-public:
- void push_back(const T& Elt) {
- const T* EltPtr = reserveForParamAndGetAddress(Elt);
- ::new ((void*)this->end()) T(*EltPtr);
- this->set_size(this->size() + 1);
- }
-
- void push_back(T&& Elt) {
- T* EltPtr = reserveForParamAndGetAddress(Elt);
- ::new ((void*)this->end()) T(::std::move(*EltPtr));
- this->set_size(this->size() + 1);
- }
-
- void pop_back() {
- this->set_size(this->size() - 1);
- this->end()->~T();
- }
-};
-
-// Define this out-of-line to dissuade the C++ compiler from inlining it.
-template <typename T, bool TriviallyCopyable>
-void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
- size_t NewCapacity;
- T* NewElts = mallocForGrow(MinSize, NewCapacity);
- moveElementsForGrow(NewElts);
- takeAllocationForGrow(NewElts, NewCapacity);
-}
-
-// Define this out-of-line to dissuade the C++ compiler from inlining it.
-template <typename T, bool TriviallyCopyable>
-void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow(
- T* NewElts) {
- // Move the elements over.
- this->uninitialized_move(this->begin(), this->end(), NewElts);
-
- // Destroy the original elements.
- destroy_range(this->begin(), this->end());
-}
-
-// Define this out-of-line to dissuade the C++ compiler from inlining it.
-template <typename T, bool TriviallyCopyable>
-void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow(
- T* NewElts, size_t NewCapacity) {
- // If this wasn't grown from the inline copy, deallocate the old space.
- if (!this->isSmall())
- free(this->begin());
-
- this->BeginX = NewElts;
- this->Capacity = NewCapacity;
-}
-
-/// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
-/// method implementations that are designed to work with trivially copyable
-/// T's. This allows using memcpy in place of copy/move construction and
-/// skipping destruction.
-template <typename T>
-class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
- friend class SmallVectorTemplateCommon<T>;
-
-protected:
- /// True if it's cheap enough to take parameters by value. Doing so avoids
- /// overhead related to mitigations for reference invalidation.
- static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void*);
-
- /// Either const T& or T, depending on whether it's cheap enough to take
- /// parameters by value.
- using ValueParamT =
- typename std::conditional<TakesParamByValue, T, const T&>::type;
-
- SmallVectorTemplateBase(size_t Size)
- : SmallVectorTemplateCommon<T>(Size) {}
-
- // No need to do a destroy loop for POD's.
- static void destroy_range(T*, T*) {}
-
- /// Move the range [I, E) onto the uninitialized memory
- /// starting with "Dest", constructing elements into it as needed.
- template <typename It1, typename It2>
- static void uninitialized_move(It1 I, It1 E, It2 Dest) {
- // Just do a copy.
- uninitialized_copy(I, E, Dest);
- }
-
- /// Copy the range [I, E) onto the uninitialized memory
- /// starting with "Dest", constructing elements into it as needed.
- template <typename It1, typename It2>
- static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
- // Arbitrary iterator types; just use the basic implementation.
- std::uninitialized_copy(I, E, Dest);
- }
-
- /// Copy the range [I, E) onto the uninitialized memory
- /// starting with "Dest", constructing elements into it as needed.
- template <typename T1, typename T2>
- static void uninitialized_copy(
- T1* I, T1* E, T2* Dest, std::enable_if_t<std::is_same<typename std::remove_const<T1>::type, T2>::value>* = nullptr) {
- // Use memcpy for PODs iterated by pointers (which includes SmallVector
- // iterators): std::uninitialized_copy optimizes to memmove, but we can
- // use memcpy here. Note that I and E are iterators and thus might be
- // invalid for memcpy if they are equal.
- if (I != E)
- memcpy(reinterpret_cast<void*>(Dest), I, (E - I) * sizeof(T));
- }
-
- /// Double the size of the allocated memory, guaranteeing space for at
- /// least one more element or MinSize if specified.
- void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
-
- /// Reserve enough space to add one element, and return the updated element
- /// pointer in case it was a reference to the storage.
- const T* reserveForParamAndGetAddress(const T& Elt, size_t N = 1) {
- return this->reserveForParamAndGetAddressImpl(this, Elt, N);
- }
-
- /// Reserve enough space to add one element, and return the updated element
- /// pointer in case it was a reference to the storage.
- T* reserveForParamAndGetAddress(T& Elt, size_t N = 1) {
- return const_cast<T*>(
- this->reserveForParamAndGetAddressImpl(this, Elt, N));
- }
-
- /// Copy \p V or return a reference, depending on \a ValueParamT.
- static ValueParamT forward_value_param(ValueParamT V) { return V; }
-
- void growAndAssign(size_t NumElts, T Elt) {
- // Elt has been copied in case it's an internal reference, side-stepping
- // reference invalidation problems without losing the realloc optimization.
- this->set_size(0);
- this->grow(NumElts);
- std::uninitialized_fill_n(this->begin(), NumElts, Elt);
- this->set_size(NumElts);
- }
-
- template <typename... ArgTypes>
- T& growAndEmplaceBack(ArgTypes&&... Args) {
- // Use push_back with a copy in case Args has an internal reference,
- // side-stepping reference invalidation problems without losing the realloc
- // optimization.
- push_back(T(std::forward<ArgTypes>(Args)...));
- return this->back();
- }
-
-public:
- void push_back(ValueParamT Elt) {
- const T* EltPtr = reserveForParamAndGetAddress(Elt);
- memcpy(reinterpret_cast<void*>(this->end()), EltPtr, sizeof(T));
- this->set_size(this->size() + 1);
- }
-
- void pop_back() { this->set_size(this->size() - 1); }
-};
-
-/// This class consists of common code factored out of the SmallVector class to
-/// reduce code duplication based on the SmallVector 'N' template parameter.
-template <typename T>
-class SmallVectorImpl : public SmallVectorTemplateBase<T> {
- using SuperClass = SmallVectorTemplateBase<T>;
-
-public:
- using iterator = typename SuperClass::iterator;
- using const_iterator = typename SuperClass::const_iterator;
- using reference = typename SuperClass::reference;
- using size_type = typename SuperClass::size_type;
-
-protected:
- using SmallVectorTemplateBase<T>::TakesParamByValue;
- using ValueParamT = typename SuperClass::ValueParamT;
-
- // Default ctor - Initialize to empty.
- explicit SmallVectorImpl(unsigned N)
- : SmallVectorTemplateBase<T>(N) {}
-
- void assignRemote(SmallVectorImpl&& RHS) {
- this->destroy_range(this->begin(), this->end());
- if (!this->isSmall())
- free(this->begin());
- this->BeginX = RHS.BeginX;
- this->Size = RHS.Size;
- this->Capacity = RHS.Capacity;
- RHS.resetToSmall();
- }
-
-public:
- SmallVectorImpl(const SmallVectorImpl&) = delete;
-
- ~SmallVectorImpl() {
- // Subclass has already destructed this vector's elements.
- // If this wasn't grown from the inline copy, deallocate the old space.
- if (!this->isSmall())
- free(this->begin());
- }
-
- void clear() {
- this->destroy_range(this->begin(), this->end());
- this->Size = 0;
- }
-
-private:
- // Make set_size() private to avoid misuse in subclasses.
- using SuperClass::set_size;
-
- template <bool ForOverwrite>
- void resizeImpl(size_type N) {
- if (N == this->size())
- return;
-
- if (N < this->size()) {
- this->truncate(N);
- return;
- }
-
- this->reserve(N);
- for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
- if (ForOverwrite)
- new (&*I) T;
- else
- new (&*I) T();
- this->set_size(N);
- }
-
-public:
- void resize(size_type N) { resizeImpl<false>(N); }
-
- /// Like resize, but \ref T is POD, the new values won't be initialized.
- void resize_for_overwrite(size_type N) { resizeImpl<true>(N); }
-
- /// Like resize, but requires that \p N is less than \a size().
- void truncate(size_type N) {
- assert(this->size() >= N && "Cannot increase size with truncate");
- this->destroy_range(this->begin() + N, this->end());
- this->set_size(N);
- }
-
- void resize(size_type N, ValueParamT NV) {
- if (N == this->size())
- return;
-
- if (N < this->size()) {
- this->truncate(N);
- return;
- }
-
- // N > this->size(). Defer to append.
- this->append(N - this->size(), NV);
- }
-
- void reserve(size_type N) {
- if (this->capacity() < N)
- this->grow(N);
- }
-
- void pop_back_n(size_type NumItems) {
- assert(this->size() >= NumItems);
- truncate(this->size() - NumItems);
- }
-
- [[nodiscard]] T pop_back_val() {
- T Result = ::std::move(this->back());
- this->pop_back();
- return Result;
- }
-
- void swap(SmallVectorImpl& RHS);
-
- /// Add the specified range to the end of the SmallVector.
- template <typename in_iter,
- typename = std::enable_if_t<std::is_convertible<
- typename std::iterator_traits<in_iter>::iterator_category,
- std::input_iterator_tag>::value>>
- void append(in_iter in_start, in_iter in_end) {
- this->assertSafeToAddRange(in_start, in_end);
- size_type NumInputs = std::distance(in_start, in_end);
- this->reserve(this->size() + NumInputs);
- this->uninitialized_copy(in_start, in_end, this->end());
- this->set_size(this->size() + NumInputs);
- }
-
- /// Append \p NumInputs copies of \p Elt to the end.
- void append(size_type NumInputs, ValueParamT Elt) {
- const T* EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs);
- std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr);
- this->set_size(this->size() + NumInputs);
- }
-
- void append(std::initializer_list<T> IL) {
- append(IL.begin(), IL.end());
- }
-
- void append(const SmallVectorImpl& RHS) { append(RHS.begin(), RHS.end()); }
-
- void assign(size_type NumElts, ValueParamT Elt) {
- // Note that Elt could be an internal reference.
- if (NumElts > this->capacity()) {
- this->growAndAssign(NumElts, Elt);
- return;
- }
-
- // Assign over existing elements.
- std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt);
- if (NumElts > this->size())
- std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt);
- else if (NumElts < this->size())
- this->destroy_range(this->begin() + NumElts, this->end());
- this->set_size(NumElts);
- }
-
- // FIXME: Consider assigning over existing elements, rather than clearing &
- // re-initializing them - for all assign(...) variants.
-
- template <typename in_iter,
- typename = std::enable_if_t<std::is_convertible<
- typename std::iterator_traits<in_iter>::iterator_category,
- std::input_iterator_tag>::value>>
- void assign(in_iter in_start, in_iter in_end) {
- this->assertSafeToReferenceAfterClear(in_start, in_end);
- clear();
- append(in_start, in_end);
- }
-
- void assign(std::initializer_list<T> IL) {
- clear();
- append(IL);
- }
-
- void assign(const SmallVectorImpl& RHS) { assign(RHS.begin(), RHS.end()); }
-
- iterator erase(const_iterator CI) {
- // Just cast away constness because this is a non-const member function.
- iterator I = const_cast<iterator>(CI);
-
- assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds.");
-
- iterator N = I;
- // Shift all elts down one.
- std::move(I + 1, this->end(), I);
- // Drop the last elt.
- this->pop_back();
- return (N);
- }
-
- iterator erase(const_iterator CS, const_iterator CE) {
- // Just cast away constness because this is a non-const member function.
- iterator S = const_cast<iterator>(CS);
- iterator E = const_cast<iterator>(CE);
-
- assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds.");
-
- iterator N = S;
- // Shift all elts down.
- iterator I = std::move(E, this->end(), S);
- // Drop the last elts.
- this->destroy_range(I, this->end());
- this->set_size(I - this->begin());
- return (N);
- }
-
-private:
- template <class ArgType>
- iterator insert_one_impl(iterator I, ArgType&& Elt) {
- // Callers ensure that ArgType is derived from T.
- static_assert(
- std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>,
- T>::value,
- "ArgType must be derived from T!");
-
- if (I == this->end()) { // Important special case for empty vector.
- this->push_back(::std::forward<ArgType>(Elt));
- return this->end() - 1;
- }
-
- assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
-
- // Grow if necessary.
- size_t Index = I - this->begin();
- std::remove_reference_t<ArgType>* EltPtr =
- this->reserveForParamAndGetAddress(Elt);
- I = this->begin() + Index;
-
- ::new ((void*)this->end()) T(::std::move(this->back()));
- // Push everything else over.
- std::move_backward(I, this->end() - 1, this->end());
- this->set_size(this->size() + 1);
-
- // If we just moved the element we're inserting, be sure to update
- // the reference (never happens if TakesParamByValue).
- static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value,
- "ArgType must be 'T' when taking by value!");
- if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end()))
- ++EltPtr;
-
- *I = ::std::forward<ArgType>(*EltPtr);
- return I;
- }
-
-public:
- iterator insert(iterator I, T&& Elt) {
- return insert_one_impl(I, this->forward_value_param(std::move(Elt)));
- }
-
- iterator insert(iterator I, const T& Elt) {
- return insert_one_impl(I, this->forward_value_param(Elt));
- }
-
- iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) {
- // Convert iterator to elt# to avoid invalidating iterator when we reserve()
- size_t InsertElt = I - this->begin();
-
- if (I == this->end()) { // Important special case for empty vector.
- append(NumToInsert, Elt);
- return this->begin() + InsertElt;
- }
-
- assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
-
- // Ensure there is enough space, and get the (maybe updated) address of
- // Elt.
- const T* EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert);
-
- // Uninvalidate the iterator.
- I = this->begin() + InsertElt;
-
- // If there are more elements between the insertion point and the end of the
- // range than there are being inserted, we can use a simple approach to
- // insertion. Since we already reserved space, we know that this won't
- // reallocate the vector.
- if (size_t(this->end() - I) >= NumToInsert) {
- T* OldEnd = this->end();
- append(std::move_iterator<iterator>(this->end() - NumToInsert),
- std::move_iterator<iterator>(this->end()));
-
- // Copy the existing elements that get replaced.
- std::move_backward(I, OldEnd - NumToInsert, OldEnd);
-
- // If we just moved the element we're inserting, be sure to update
- // the reference (never happens if TakesParamByValue).
- if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
- EltPtr += NumToInsert;
-
- std::fill_n(I, NumToInsert, *EltPtr);
- return I;
- }
-
- // Otherwise, we're inserting more elements than exist already, and we're
- // not inserting at the end.
-
- // Move over the elements that we're about to overwrite.
- T* OldEnd = this->end();
- this->set_size(this->size() + NumToInsert);
- size_t NumOverwritten = OldEnd - I;
- this->uninitialized_move(I, OldEnd, this->end() - NumOverwritten);
-
- // If we just moved the element we're inserting, be sure to update
- // the reference (never happens if TakesParamByValue).
- if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
- EltPtr += NumToInsert;
-
- // Replace the overwritten part.
- std::fill_n(I, NumOverwritten, *EltPtr);
-
- // Insert the non-overwritten middle part.
- std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr);
- return I;
- }
-
- template <typename ItTy,
- typename = std::enable_if_t<std::is_convertible<
- typename std::iterator_traits<ItTy>::iterator_category,
- std::input_iterator_tag>::value>>
- iterator insert(iterator I, ItTy From, ItTy To) {
- // Convert iterator to elt# to avoid invalidating iterator when we reserve()
- size_t InsertElt = I - this->begin();
-
- if (I == this->end()) { // Important special case for empty vector.
- append(From, To);
- return this->begin() + InsertElt;
- }
-
- assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
-
- // Check that the reserve that follows doesn't invalidate the iterators.
- this->assertSafeToAddRange(From, To);
-
- size_t NumToInsert = std::distance(From, To);
-
- // Ensure there is enough space.
- reserve(this->size() + NumToInsert);
-
- // Uninvalidate the iterator.
- I = this->begin() + InsertElt;
-
- // If there are more elements between the insertion point and the end of the
- // range than there are being inserted, we can use a simple approach to
- // insertion. Since we already reserved space, we know that this won't
- // reallocate the vector.
- if (size_t(this->end() - I) >= NumToInsert) {
- T* OldEnd = this->end();
- append(std::move_iterator<iterator>(this->end() - NumToInsert),
- std::move_iterator<iterator>(this->end()));
-
- // Copy the existing elements that get replaced.
- std::move_backward(I, OldEnd - NumToInsert, OldEnd);
-
- std::copy(From, To, I);
- return I;
- }
-
- // Otherwise, we're inserting more elements than exist already, and we're
- // not inserting at the end.
-
- // Move over the elements that we're about to overwrite.
- T* OldEnd = this->end();
- this->set_size(this->size() + NumToInsert);
- size_t NumOverwritten = OldEnd - I;
- this->uninitialized_move(I, OldEnd, this->end() - NumOverwritten);
-
- // Replace the overwritten part.
- for (T* J = I; NumOverwritten > 0; --NumOverwritten) {
- *J = *From;
- ++J;
- ++From;
- }
-
- // Insert the non-overwritten middle part.
- this->uninitialized_copy(From, To, OldEnd);
- return I;
- }
-
- void insert(iterator I, std::initializer_list<T> IL) {
- insert(I, IL.begin(), IL.end());
- }
-
- template <typename... ArgTypes>
- reference emplace_back(ArgTypes&&... Args) {
- if (LLVM_UNLIKELY(this->size() >= this->capacity()))
- return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...);
-
- ::new ((void*)this->end()) T(std::forward<ArgTypes>(Args)...);
- this->set_size(this->size() + 1);
- return this->back();
- }
-
- SmallVectorImpl& operator=(const SmallVectorImpl& RHS);
-
- SmallVectorImpl& operator=(SmallVectorImpl&& RHS);
-
- bool operator==(const SmallVectorImpl& RHS) const {
- if (this->size() != RHS.size()) return false;
- return std::equal(this->begin(), this->end(), RHS.begin());
- }
- bool operator!=(const SmallVectorImpl& RHS) const {
- return !(*this == RHS);
- }
-
- bool operator<(const SmallVectorImpl& RHS) const {
- return std::lexicographical_compare(this->begin(), this->end(), RHS.begin(), RHS.end());
- }
-};
-
-template <typename T>
-void SmallVectorImpl<T>::swap(SmallVectorImpl<T>& RHS) {
- if (this == &RHS) return;
-
- // We can only avoid copying elements if neither vector is small.
- if (!this->isSmall() && !RHS.isSmall()) {
- std::swap(this->BeginX, RHS.BeginX);
- std::swap(this->Size, RHS.Size);
- std::swap(this->Capacity, RHS.Capacity);
- return;
- }
- this->reserve(RHS.size());
- RHS.reserve(this->size());
-
- // Swap the shared elements.
- size_t NumShared = this->size();
- if (NumShared > RHS.size()) NumShared = RHS.size();
- for (size_type i = 0; i != NumShared; ++i)
- std::swap((*this)[i], RHS[i]);
-
- // Copy over the extra elts.
- if (this->size() > RHS.size()) {
- size_t EltDiff = this->size() - RHS.size();
- this->uninitialized_copy(this->begin() + NumShared, this->end(), RHS.end());
- RHS.set_size(RHS.size() + EltDiff);
- this->destroy_range(this->begin() + NumShared, this->end());
- this->set_size(NumShared);
- } else if (RHS.size() > this->size()) {
- size_t EltDiff = RHS.size() - this->size();
- this->uninitialized_copy(RHS.begin() + NumShared, RHS.end(), this->end());
- this->set_size(this->size() + EltDiff);
- this->destroy_range(RHS.begin() + NumShared, RHS.end());
- RHS.set_size(NumShared);
- }
-}
-
-template <typename T>
-SmallVectorImpl<T>& SmallVectorImpl<T>::
-operator=(const SmallVectorImpl<T>& RHS) {
- // Avoid self-assignment.
- if (this == &RHS) return *this;
-
- // If we already have sufficient space, assign the common elements, then
- // destroy any excess.
- size_t RHSSize = RHS.size();
- size_t CurSize = this->size();
- if (CurSize >= RHSSize) {
- // Assign common elements.
- iterator NewEnd;
- if (RHSSize)
- NewEnd = std::copy(RHS.begin(), RHS.begin() + RHSSize, this->begin());
- else
- NewEnd = this->begin();
-
- // Destroy excess elements.
- this->destroy_range(NewEnd, this->end());
-
- // Trim.
- this->set_size(RHSSize);
- return *this;
- }
-
- // If we have to grow to have enough elements, destroy the current elements.
- // This allows us to avoid copying them during the grow.
- // FIXME: don't do this if they're efficiently moveable.
- if (this->capacity() < RHSSize) {
- // Destroy current elements.
- this->clear();
- CurSize = 0;
- this->grow(RHSSize);
- } else if (CurSize) {
- // Otherwise, use assignment for the already-constructed elements.
- std::copy(RHS.begin(), RHS.begin() + CurSize, this->begin());
- }
-
- // Copy construct the new elements in place.
- this->uninitialized_copy(RHS.begin() + CurSize, RHS.end(), this->begin() + CurSize);
-
- // Set end.
- this->set_size(RHSSize);
- return *this;
-}
-
-template <typename T>
-SmallVectorImpl<T>& SmallVectorImpl<T>::operator=(SmallVectorImpl<T>&& RHS) {
- // Avoid self-assignment.
- if (this == &RHS) return *this;
-
- // If the RHS isn't small, clear this vector and then steal its buffer.
- if (!RHS.isSmall()) {
- this->assignRemote(std::move(RHS));
- return *this;
- }
-
- // If we already have sufficient space, assign the common elements, then
- // destroy any excess.
- size_t RHSSize = RHS.size();
- size_t CurSize = this->size();
- if (CurSize >= RHSSize) {
- // Assign common elements.
- iterator NewEnd = this->begin();
- if (RHSSize)
- NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
-
- // Destroy excess elements and trim the bounds.
- this->destroy_range(NewEnd, this->end());
- this->set_size(RHSSize);
-
- // Clear the RHS.
- RHS.clear();
-
- return *this;
- }
-
- // If we have to grow to have enough elements, destroy the current elements.
- // This allows us to avoid copying them during the grow.
- // FIXME: this may not actually make any sense if we can efficiently move
- // elements.
- if (this->capacity() < RHSSize) {
- // Destroy current elements.
- this->clear();
- CurSize = 0;
- this->grow(RHSSize);
- } else if (CurSize) {
- // Otherwise, use assignment for the already-constructed elements.
- std::move(RHS.begin(), RHS.begin() + CurSize, this->begin());
- }
-
- // Move-construct the new elements in place.
- this->uninitialized_move(RHS.begin() + CurSize, RHS.end(), this->begin() + CurSize);
-
- // Set end.
- this->set_size(RHSSize);
-
- RHS.clear();
- return *this;
-}
-
-/// Storage for the SmallVector elements. This is specialized for the N=0 case
-/// to avoid allocating unnecessary storage.
-template <typename T, unsigned N>
-struct SmallVectorStorage {
- alignas(T) char InlineElts[N * sizeof(T)];
-};
-
-/// We need the storage to be properly aligned even for small-size of 0 so that
-/// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
-/// well-defined.
-template <typename T>
-struct alignas(T) SmallVectorStorage<T, 0> {};
-
-/// Forward declaration of SmallVector so that
-/// calculateSmallVectorDefaultInlinedElements can reference
-/// `sizeof(SmallVector<T, 0>)`.
-template <typename T, unsigned N>
-class SmallVector;
-
-/// Helper class for calculating the default number of inline elements for
-/// `SmallVector<T>`.
-///
-/// This should be migrated to a constexpr function when our minimum
-/// compiler support is enough for multi-statement constexpr functions.
-template <typename T>
-struct CalculateSmallVectorDefaultInlinedElements {
- // Parameter controlling the default number of inlined elements
- // for `SmallVector<T>`.
- //
- // The default number of inlined elements ensures that
- // 1. There is at least one inlined element.
- // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless
- // it contradicts 1.
- static constexpr size_t kPreferredSmallVectorSizeof = 64;
-
- // static_assert that sizeof(T) is not "too big".
- //
- // Because our policy guarantees at least one inlined element, it is possible
- // for an arbitrarily large inlined element to allocate an arbitrarily large
- // amount of inline storage. We generally consider it an antipattern for a
- // SmallVector to allocate an excessive amount of inline storage, so we want
- // to call attention to these cases and make sure that users are making an
- // intentional decision if they request a lot of inline storage.
- //
- // We want this assertion to trigger in pathological cases, but otherwise
- // not be too easy to hit. To accomplish that, the cutoff is actually somewhat
- // larger than kPreferredSmallVectorSizeof (otherwise,
- // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that
- // pattern seems useful in practice).
- //
- // One wrinkle is that this assertion is in theory non-portable, since
- // sizeof(T) is in general platform-dependent. However, we don't expect this
- // to be much of an issue, because most LLVM development happens on 64-bit
- // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for
- // 32-bit hosts, dodging the issue. The reverse situation, where development
- // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a
- // 64-bit host, is expected to be very rare.
- static_assert(
- sizeof(T) <= 256,
- "You are trying to use a default number of inlined elements for "
- "`SmallVector<T>` but `sizeof(T)` is really big! Please use an "
- "explicit number of inlined elements with `SmallVector<T, N>` to make "
- "sure you really want that much inline storage.");
-
- // Discount the size of the header itself when calculating the maximum inline
- // bytes.
- static constexpr size_t PreferredInlineBytes =
- kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>);
- static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T);
- static constexpr size_t value =
- NumElementsThatFit == 0 ? 1 : NumElementsThatFit;
-};
-
-/// This is a 'vector' (really, a variable-sized array), optimized
-/// for the case when the array is small. It contains some number of elements
-/// in-place, which allows it to avoid heap allocation when the actual number of
-/// elements is below that threshold. This allows normal "small" cases to be
-/// fast without losing generality for large inputs.
-///
-/// \note
-/// In the absence of a well-motivated choice for the number of inlined
-/// elements \p N, it is recommended to use \c SmallVector<T> (that is,
-/// omitting the \p N). This will choose a default number of inlined elements
-/// reasonable for allocation on the stack (for example, trying to keep \c
-/// sizeof(SmallVector<T>) around 64 bytes).
-///
-/// \warning This does not attempt to be exception safe.
-///
-/// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h
-template <typename T,
- unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value>
-class SmallVector : public SmallVectorImpl<T>,
- SmallVectorStorage<T, N> {
-public:
- SmallVector()
- : SmallVectorImpl<T>(N) {}
-
- ~SmallVector() {
- // Destroy the constructed elements in the vector.
- this->destroy_range(this->begin(), this->end());
- }
-
- explicit SmallVector(size_t Size, const T& Value = T())
- : SmallVectorImpl<T>(N) {
- this->assign(Size, Value);
- }
-
- template <typename ItTy,
- typename = std::enable_if_t<std::is_convertible<
- typename std::iterator_traits<ItTy>::iterator_category,
- std::input_iterator_tag>::value>>
- SmallVector(ItTy S, ItTy E)
- : SmallVectorImpl<T>(N) {
- this->append(S, E);
- }
-
- template <typename RangeTy>
- explicit SmallVector(const iterator_range<RangeTy>& R)
- : SmallVectorImpl<T>(N) {
- this->append(R.begin(), R.end());
- }
-
- SmallVector(std::initializer_list<T> IL)
- : SmallVectorImpl<T>(N) {
- this->assign(IL);
- }
-
- SmallVector(const SmallVector& RHS)
- : SmallVectorImpl<T>(N) {
- if (!RHS.empty())
- SmallVectorImpl<T>::operator=(RHS);
- }
-
- SmallVector& operator=(const SmallVector& RHS) {
- SmallVectorImpl<T>::operator=(RHS);
- return *this;
- }
-
- SmallVector(SmallVector&& RHS)
- : SmallVectorImpl<T>(N) {
- if (!RHS.empty())
- SmallVectorImpl<T>::operator=(::std::move(RHS));
- }
-
- SmallVector(SmallVectorImpl<T>&& RHS)
- : SmallVectorImpl<T>(N) {
- if (!RHS.empty())
- SmallVectorImpl<T>::operator=(::std::move(RHS));
- }
-
- SmallVector& operator=(SmallVector&& RHS) {
- if (N) {
- SmallVectorImpl<T>::operator=(::std::move(RHS));
- return *this;
- }
- // SmallVectorImpl<T>::operator= does not leverage N==0. Optimize the
- // case.
- if (this == &RHS)
- return *this;
- if (RHS.empty()) {
- this->destroy_range(this->begin(), this->end());
- this->Size = 0;
- } else {
- this->assignRemote(std::move(RHS));
- }
- return *this;
- }
-
- SmallVector& operator=(SmallVectorImpl<T>&& RHS) {
- SmallVectorImpl<T>::operator=(::std::move(RHS));
- return *this;
- }
-
- SmallVector& operator=(std::initializer_list<T> IL) {
- this->assign(IL);
- return *this;
- }
-};
-
-template <typename T, unsigned N>
-inline size_t capacity_in_bytes(const SmallVector<T, N>& X) {
- return X.capacity_in_bytes();
-}
-
-template <typename RangeType>
-using ValueTypeFromRangeType =
- typename std::remove_const<typename std::remove_reference<
- decltype(*std::begin(std::declval<RangeType&>()))>::type>::type;
-
-/// Given a range of type R, iterate the entire range and return a
-/// SmallVector with elements of the vector. This is useful, for example,
-/// when you want to iterate a range and then sort the results.
-template <unsigned Size, typename R>
-SmallVector<ValueTypeFromRangeType<R>, Size> to_vector(R&& Range) {
- return { std::begin(Range), std::end(Range) };
-}
-template <typename R>
-SmallVector<ValueTypeFromRangeType<R>,
- CalculateSmallVectorDefaultInlinedElements<
- ValueTypeFromRangeType<R>>::value>
-to_vector(R&& Range) {
- return { std::begin(Range), std::end(Range) };
-}
-
-namespace std {
-
-/// Implement std::swap in terms of SmallVector swap.
-template <typename T>
-inline void swap(SmallVectorImpl<T>& LHS, SmallVectorImpl<T>& RHS) {
- LHS.swap(RHS);
-}
-
-/// Implement std::swap in terms of SmallVector swap.
-template <typename T, unsigned N>
-inline void swap(SmallVector<T, N>& LHS, SmallVector<T, N>& RHS) {
- LHS.swap(RHS);
-}
-
-} // namespace std
-
-#ifdef _MSC_VER
-# pragma warning(pop)
-#endif