diff options
Diffstat (limited to '3rdparty/glm/source/test/ext/ext_scalar_integer.cpp')
-rw-r--r-- | 3rdparty/glm/source/test/ext/ext_scalar_integer.cpp | 686 |
1 files changed, 686 insertions, 0 deletions
diff --git a/3rdparty/glm/source/test/ext/ext_scalar_integer.cpp b/3rdparty/glm/source/test/ext/ext_scalar_integer.cpp new file mode 100644 index 0000000..f169e8a --- /dev/null +++ b/3rdparty/glm/source/test/ext/ext_scalar_integer.cpp @@ -0,0 +1,686 @@ +#include <glm/ext/scalar_integer.hpp> +#include <glm/ext/scalar_int_sized.hpp> +#include <glm/ext/scalar_uint_sized.hpp> +#include <vector> +#include <ctime> +#include <cstdio> + +#if GLM_LANG & GLM_LANG_CXX11_FLAG +#include <chrono> + +namespace isPowerOfTwo +{ + template<typename genType> + struct type + { + genType Value; + bool Return; + }; + + int test_int16() + { + type<glm::int16> const Data[] = + { + {0x0001, true}, + {0x0002, true}, + {0x0004, true}, + {0x0080, true}, + {0x0000, true}, + {0x0003, false} + }; + + int Error = 0; + + for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int16>); i < n; ++i) + { + bool Result = glm::isPowerOfTwo(Data[i].Value); + Error += Data[i].Return == Result ? 0 : 1; + } + + return Error; + } + + int test_uint16() + { + type<glm::uint16> const Data[] = + { + {0x0001, true}, + {0x0002, true}, + {0x0004, true}, + {0x0000, true}, + {0x0000, true}, + {0x0003, false} + }; + + int Error = 0; + + for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint16>); i < n; ++i) + { + bool Result = glm::isPowerOfTwo(Data[i].Value); + Error += Data[i].Return == Result ? 0 : 1; + } + + return Error; + } + + int test_int32() + { + type<int> const Data[] = + { + {0x00000001, true}, + {0x00000002, true}, + {0x00000004, true}, + {0x0000000f, false}, + {0x00000000, true}, + {0x00000003, false} + }; + + int Error = 0; + + for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) + { + bool Result = glm::isPowerOfTwo(Data[i].Value); + Error += Data[i].Return == Result ? 0 : 1; + } + + return Error; + } + + int test_uint32() + { + type<glm::uint> const Data[] = + { + {0x00000001, true}, + {0x00000002, true}, + {0x00000004, true}, + {0x80000000, true}, + {0x00000000, true}, + {0x00000003, false} + }; + + int Error = 0; + + for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint>); i < n; ++i) + { + bool Result = glm::isPowerOfTwo(Data[i].Value); + Error += Data[i].Return == Result ? 0 : 1; + } + + return Error; + } + + int test() + { + int Error = 0; + + Error += test_int16(); + Error += test_uint16(); + Error += test_int32(); + Error += test_uint32(); + + return Error; + } +}//isPowerOfTwo + +namespace nextPowerOfTwo_advanced +{ + template<typename genIUType> + GLM_FUNC_QUALIFIER genIUType highestBitValue(genIUType Value) + { + genIUType tmp = Value; + genIUType result = genIUType(0); + while(tmp) + { + result = (tmp & (~tmp + 1)); // grab lowest bit + tmp &= ~result; // clear lowest bit + } + return result; + } + + template<typename genType> + GLM_FUNC_QUALIFIER genType nextPowerOfTwo_loop(genType value) + { + return glm::isPowerOfTwo(value) ? value : highestBitValue(value) << 1; + } + + template<typename genType> + struct type + { + genType Value; + genType Return; + }; + + int test_int32() + { + type<glm::int32> const Data[] = + { + {0x0000ffff, 0x00010000}, + {-3, -4}, + {-8, -8}, + {0x00000001, 0x00000001}, + {0x00000002, 0x00000002}, + {0x00000004, 0x00000004}, + {0x00000007, 0x00000008}, + {0x0000fff0, 0x00010000}, + {0x0000f000, 0x00010000}, + {0x08000000, 0x08000000}, + {0x00000000, 0x00000000}, + {0x00000003, 0x00000004} + }; + + int Error(0); + + for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int32>); i < n; ++i) + { + glm::int32 Result = glm::nextPowerOfTwo(Data[i].Value); + Error += Data[i].Return == Result ? 0 : 1; + } + + return Error; + } + + int test_uint32() + { + type<glm::uint32> const Data[] = + { + {0x00000001, 0x00000001}, + {0x00000002, 0x00000002}, + {0x00000004, 0x00000004}, + {0x00000007, 0x00000008}, + {0x0000ffff, 0x00010000}, + {0x0000fff0, 0x00010000}, + {0x0000f000, 0x00010000}, + {0x80000000, 0x80000000}, + {0x00000000, 0x00000000}, + {0x00000003, 0x00000004} + }; + + int Error(0); + + for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint32>); i < n; ++i) + { + glm::uint32 Result = glm::nextPowerOfTwo(Data[i].Value); + Error += Data[i].Return == Result ? 0 : 1; + } + + return Error; + } + + int perf() + { + int Error(0); + + std::vector<glm::uint> v; + v.resize(100000000); + + std::clock_t Timestramp0 = std::clock(); + + for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i) + v[i] = nextPowerOfTwo_loop(i); + + std::clock_t Timestramp1 = std::clock(); + + for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i) + v[i] = glm::nextPowerOfTwo(i); + + std::clock_t Timestramp2 = std::clock(); + + std::printf("nextPowerOfTwo_loop: %d clocks\n", static_cast<int>(Timestramp1 - Timestramp0)); + std::printf("glm::nextPowerOfTwo: %d clocks\n", static_cast<int>(Timestramp2 - Timestramp1)); + + return Error; + } + + int test() + { + int Error(0); + + Error += test_int32(); + Error += test_uint32(); + + return Error; + } +}//namespace nextPowerOfTwo_advanced + +namespace prevPowerOfTwo +{ + template <typename T> + int run() + { + int Error = 0; + + T const A = glm::prevPowerOfTwo(static_cast<T>(7)); + Error += A == static_cast<T>(4) ? 0 : 1; + + T const B = glm::prevPowerOfTwo(static_cast<T>(15)); + Error += B == static_cast<T>(8) ? 0 : 1; + + T const C = glm::prevPowerOfTwo(static_cast<T>(31)); + Error += C == static_cast<T>(16) ? 0 : 1; + + T const D = glm::prevPowerOfTwo(static_cast<T>(32)); + Error += D == static_cast<T>(32) ? 0 : 1; + + return Error; + } + + int test() + { + int Error = 0; + + Error += run<glm::int8>(); + Error += run<glm::int16>(); + Error += run<glm::int32>(); + Error += run<glm::int64>(); + + Error += run<glm::uint8>(); + Error += run<glm::uint16>(); + Error += run<glm::uint32>(); + Error += run<glm::uint64>(); + + return Error; + } +}//namespace prevPowerOfTwo + +namespace nextPowerOfTwo +{ + template <typename T> + int run() + { + int Error = 0; + + T const A = glm::nextPowerOfTwo(static_cast<T>(7)); + Error += A == static_cast<T>(8) ? 0 : 1; + + T const B = glm::nextPowerOfTwo(static_cast<T>(15)); + Error += B == static_cast<T>(16) ? 0 : 1; + + T const C = glm::nextPowerOfTwo(static_cast<T>(31)); + Error += C == static_cast<T>(32) ? 0 : 1; + + T const D = glm::nextPowerOfTwo(static_cast<T>(32)); + Error += D == static_cast<T>(32) ? 0 : 1; + + return Error; + } + + int test() + { + int Error = 0; + + Error += run<glm::int8>(); + Error += run<glm::int16>(); + Error += run<glm::int32>(); + Error += run<glm::int64>(); + + Error += run<glm::uint8>(); + Error += run<glm::uint16>(); + Error += run<glm::uint32>(); + Error += run<glm::uint64>(); + + return Error; + } +}//namespace nextPowerOfTwo + +namespace prevMultiple +{ + template<typename genIUType> + struct type + { + genIUType Source; + genIUType Multiple; + genIUType Return; + }; + + template <typename T> + int run() + { + type<T> const Data[] = + { + {8, 3, 6}, + {7, 7, 7} + }; + + int Error = 0; + + for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i) + { + T const Result = glm::prevMultiple(Data[i].Source, Data[i].Multiple); + Error += Data[i].Return == Result ? 0 : 1; + } + + return Error; + } + + int test() + { + int Error = 0; + + Error += run<glm::int8>(); + Error += run<glm::int16>(); + Error += run<glm::int32>(); + Error += run<glm::int64>(); + + Error += run<glm::uint8>(); + Error += run<glm::uint16>(); + Error += run<glm::uint32>(); + Error += run<glm::uint64>(); + + return Error; + } +}//namespace prevMultiple + +namespace nextMultiple +{ + static glm::uint const Multiples = 128; + + int perf_nextMultiple(glm::uint Samples) + { + std::vector<glm::uint> Results(Samples * Multiples); + + std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); + + for(glm::uint Source = 0; Source < Samples; ++Source) + for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) + { + Results[Source * Multiples + Multiple] = glm::nextMultiple(Source, Multiples); + } + + std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); + + std::printf("- glm::nextMultiple Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); + + glm::uint Result = 0; + for(std::size_t i = 0, n = Results.size(); i < n; ++i) + Result += Results[i]; + + return Result > 0 ? 0 : 1; + } + + template <typename T> + GLM_FUNC_QUALIFIER T nextMultipleMod(T Source, T Multiple) + { + T const Tmp = Source - static_cast<T>(1); + return Tmp + (Multiple - (Tmp % Multiple)); + } + + int perf_nextMultipleMod(glm::uint Samples) + { + std::vector<glm::uint> Results(Samples * Multiples); + + std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); + + for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) + for (glm::uint Source = 0; Source < Samples; ++Source) + { + Results[Source * Multiples + Multiple] = nextMultipleMod(Source, Multiples); + } + + std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); + + std::printf("- nextMultipleMod Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); + + glm::uint Result = 0; + for(std::size_t i = 0, n = Results.size(); i < n; ++i) + Result += Results[i]; + + return Result > 0 ? 0 : 1; + } + + template <typename T> + GLM_FUNC_QUALIFIER T nextMultipleNeg(T Source, T Multiple) + { + if(Source > static_cast<T>(0)) + { + T const Tmp = Source - static_cast<T>(1); + return Tmp + (Multiple - (Tmp % Multiple)); + } + else + return Source + (-Source % Multiple); + } + + int perf_nextMultipleNeg(glm::uint Samples) + { + std::vector<glm::uint> Results(Samples * Multiples); + + std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); + + for(glm::uint Source = 0; Source < Samples; ++Source) + for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) + { + Results[Source * Multiples + Multiple] = nextMultipleNeg(Source, Multiples); + } + + std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); + + std::printf("- nextMultipleNeg Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); + + glm::uint Result = 0; + for (std::size_t i = 0, n = Results.size(); i < n; ++i) + Result += Results[i]; + + return Result > 0 ? 0 : 1; + } + + template <typename T> + GLM_FUNC_QUALIFIER T nextMultipleUFloat(T Source, T Multiple) + { + return Source + (Multiple - std::fmod(Source, Multiple)); + } + + int perf_nextMultipleUFloat(glm::uint Samples) + { + std::vector<float> Results(Samples * Multiples); + + std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); + + for(glm::uint Source = 0; Source < Samples; ++Source) + for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) + { + Results[Source * Multiples + Multiple] = nextMultipleUFloat(static_cast<float>(Source), static_cast<float>(Multiples)); + } + + std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); + + std::printf("- nextMultipleUFloat Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); + + float Result = 0; + for (std::size_t i = 0, n = Results.size(); i < n; ++i) + Result += Results[i]; + + return Result > 0.0f ? 0 : 1; + } + + template <typename T> + GLM_FUNC_QUALIFIER T nextMultipleFloat(T Source, T Multiple) + { + if(Source > static_cast<float>(0)) + return Source + (Multiple - std::fmod(Source, Multiple)); + else + return Source + std::fmod(-Source, Multiple); + } + + int perf_nextMultipleFloat(glm::uint Samples) + { + std::vector<float> Results(Samples * Multiples); + + std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); + + for(glm::uint Source = 0; Source < Samples; ++Source) + for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) + { + Results[Source * Multiples + Multiple] = nextMultipleFloat(static_cast<float>(Source), static_cast<float>(Multiples)); + } + + std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); + + std::printf("- nextMultipleFloat Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); + + float Result = 0; + for (std::size_t i = 0, n = Results.size(); i < n; ++i) + Result += Results[i]; + + return Result > 0.0f ? 0 : 1; + } + + template<typename genIUType> + struct type + { + genIUType Source; + genIUType Multiple; + genIUType Return; + }; + + template <typename T> + int test_uint() + { + type<T> const Data[] = + { + { 3, 4, 4 }, + { 6, 3, 6 }, + { 5, 3, 6 }, + { 7, 7, 7 }, + { 0, 1, 0 }, + { 8, 3, 9 } + }; + + int Error = 0; + + for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i) + { + T const Result0 = glm::nextMultiple(Data[i].Source, Data[i].Multiple); + Error += Data[i].Return == Result0 ? 0 : 1; + assert(!Error); + + T const Result1 = nextMultipleMod(Data[i].Source, Data[i].Multiple); + Error += Data[i].Return == Result1 ? 0 : 1; + assert(!Error); + } + + return Error; + } + + int perf() + { + int Error = 0; + + glm::uint const Samples = 10000; + + for(int i = 0; i < 4; ++i) + { + std::printf("Run %d :\n", i); + Error += perf_nextMultiple(Samples); + Error += perf_nextMultipleMod(Samples); + Error += perf_nextMultipleNeg(Samples); + Error += perf_nextMultipleUFloat(Samples); + Error += perf_nextMultipleFloat(Samples); + std::printf("\n"); + } + + return Error; + } + + int test() + { + int Error = 0; + + Error += test_uint<glm::int8>(); + Error += test_uint<glm::int16>(); + Error += test_uint<glm::int32>(); + Error += test_uint<glm::int64>(); + + Error += test_uint<glm::uint8>(); + Error += test_uint<glm::uint16>(); + Error += test_uint<glm::uint32>(); + Error += test_uint<glm::uint64>(); + + return Error; + } +}//namespace nextMultiple + +namespace findNSB +{ + template<typename T> + struct type + { + T Source; + int SignificantBitCount; + int Return; + }; + + template <typename T> + int run() + { + type<T> const Data[] = + { + { 0x00, 1,-1 }, + { 0x01, 2,-1 }, + { 0x02, 2,-1 }, + { 0x06, 3,-1 }, + { 0x01, 1, 0 }, + { 0x03, 1, 0 }, + { 0x03, 2, 1 }, + { 0x07, 2, 1 }, + { 0x05, 2, 2 }, + { 0x0D, 2, 2 } + }; + + int Error = 0; + + for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i) + { + int const Result0 = glm::findNSB(Data[i].Source, Data[i].SignificantBitCount); + Error += Data[i].Return == Result0 ? 0 : 1; + assert(!Error); + } + + return Error; + } + + int test() + { + int Error = 0; + + Error += run<glm::uint8>(); + Error += run<glm::uint16>(); + Error += run<glm::uint32>(); + Error += run<glm::uint64>(); + + Error += run<glm::int8>(); + Error += run<glm::int16>(); + Error += run<glm::int32>(); + Error += run<glm::int64>(); + + return Error; + } +}//namespace findNSB + +int main() +{ + int Error = 0; + + Error += findNSB::test(); + + Error += isPowerOfTwo::test(); + Error += prevPowerOfTwo::test(); + Error += nextPowerOfTwo::test(); + Error += nextPowerOfTwo_advanced::test(); + Error += prevMultiple::test(); + Error += nextMultiple::test(); + +# ifdef NDEBUG + Error += nextPowerOfTwo_advanced::perf(); + Error += nextMultiple::perf(); +# endif//NDEBUG + + return Error; +} + +#else + +int main() +{ + return 0; +} + +#endif |