diff options
Diffstat (limited to '3rdparty/glm/source/glm/ext/matrix_clip_space.hpp')
-rw-r--r-- | 3rdparty/glm/source/glm/ext/matrix_clip_space.hpp | 522 |
1 files changed, 522 insertions, 0 deletions
diff --git a/3rdparty/glm/source/glm/ext/matrix_clip_space.hpp b/3rdparty/glm/source/glm/ext/matrix_clip_space.hpp new file mode 100644 index 0000000..c3874f2 --- /dev/null +++ b/3rdparty/glm/source/glm/ext/matrix_clip_space.hpp @@ -0,0 +1,522 @@ +/// @ref ext_matrix_clip_space +/// @file glm/ext/matrix_clip_space.hpp +/// +/// @defgroup ext_matrix_clip_space GLM_EXT_matrix_clip_space +/// @ingroup ext +/// +/// Defines functions that generate clip space transformation matrices. +/// +/// The matrices generated by this extension use standard OpenGL fixed-function +/// conventions. For example, the lookAt function generates a transform from world +/// space into the specific eye space that the projective matrix functions +/// (perspective, ortho, etc) are designed to expect. The OpenGL compatibility +/// specifications defines the particular layout of this eye space. +/// +/// Include <glm/ext/matrix_clip_space.hpp> to use the features of this extension. +/// +/// @see ext_matrix_transform +/// @see ext_matrix_projection + +#pragma once + +// Dependencies +#include "../ext/scalar_constants.hpp" +#include "../geometric.hpp" +#include "../trigonometric.hpp" + +#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED) +# pragma message("GLM: GLM_EXT_matrix_clip_space extension included") +#endif + +namespace glm +{ + /// @addtogroup ext_matrix_clip_space + /// @{ + + /// Creates a matrix for projecting two-dimensional coordinates onto the screen. + /// + /// @tparam T A floating-point scalar type + /// + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top, T const& zNear, T const& zFar) + /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluOrtho2D.xml">gluOrtho2D man page</a> + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> ortho( + T left, T right, T bottom, T top); + + /// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @tparam T A floating-point scalar type + /// + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH_ZO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume using right-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T A floating-point scalar type + /// + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH_NO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @tparam T A floating-point scalar type + /// + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH_ZO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using right-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T A floating-point scalar type + /// + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH_NO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @tparam T A floating-point scalar type + /// + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoZO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T A floating-point scalar type + /// + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoNO( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using left-handed coordinates. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T A floating-point scalar type + /// + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoLH( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using right-handed coordinates. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T A floating-point scalar type + /// + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> orthoRH( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a matrix for an orthographic parallel viewing volume, using the default handedness and default near and far clip planes definition. + /// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE. + /// + /// @tparam T A floating-point scalar type + /// + /// @see - glm::ortho(T const& left, T const& right, T const& bottom, T const& top) + /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glOrtho.xml">glOrtho man page</a> + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> ortho( + T left, T right, T bottom, T top, T zNear, T zFar); + + /// Creates a left handed frustum matrix. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH_ZO( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a left handed frustum matrix. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH_NO( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a right handed frustum matrix. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH_ZO( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a right handed frustum matrix. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH_NO( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a frustum matrix using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumZO( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a frustum matrix using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumNO( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a left handed frustum matrix. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumLH( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a right handed frustum matrix. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustumRH( + T left, T right, T bottom, T top, T near, T far); + + /// Creates a frustum matrix with default handedness, using the default handedness and default near and far clip planes definition. + /// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE. + /// + /// @tparam T A floating-point scalar type + /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glFrustum.xml">glFrustum man page</a> + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> frustum( + T left, T right, T bottom, T top, T near, T far); + + + /// Creates a matrix for a right handed, symetric perspective-view frustum. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH_ZO( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a right handed, symetric perspective-view frustum. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH_NO( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a left handed, symetric perspective-view frustum. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH_ZO( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a left handed, symetric perspective-view frustum. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH_NO( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a symetric perspective-view frustum using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveZO( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a symetric perspective-view frustum using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveNO( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a right handed, symetric perspective-view frustum. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveRH( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a left handed, symetric perspective-view frustum. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveLH( + T fovy, T aspect, T near, T far); + + /// Creates a matrix for a symetric perspective-view frustum based on the default handedness and default near and far clip planes definition. + /// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE. + /// + /// @param fovy Specifies the field of view angle in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + /// @see <a href="https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPerspective.xml">gluPerspective man page</a> + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspective( + T fovy, T aspect, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using right-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH_ZO( + T fov, T width, T height, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using right-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH_NO( + T fov, T width, T height, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using left-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH_ZO( + T fov, T width, T height, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using left-handed coordinates. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH_NO( + T fov, T width, T height, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovZO( + T fov, T width, T height, T near, T far); + + /// Builds a perspective projection matrix based on a field of view using left-handed coordinates if GLM_FORCE_LEFT_HANDED if defined or right-handed coordinates otherwise. + /// The near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovNO( + T fov, T width, T height, T near, T far); + + /// Builds a right handed perspective projection matrix based on a field of view. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovRH( + T fov, T width, T height, T near, T far); + + /// Builds a left handed perspective projection matrix based on a field of view. + /// If GLM_FORCE_DEPTH_ZERO_TO_ONE is defined, the near and far clip planes correspond to z normalized device coordinates of 0 and +1 respectively. (Direct3D clip volume definition) + /// Otherwise, the near and far clip planes correspond to z normalized device coordinates of -1 and +1 respectively. (OpenGL clip volume definition) + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFovLH( + T fov, T width, T height, T near, T far); + + /// Builds a perspective projection matrix based on a field of view and the default handedness and default near and far clip planes definition. + /// To change default handedness use GLM_FORCE_LEFT_HANDED. To change default near and far clip planes definition use GLM_FORCE_DEPTH_ZERO_TO_ONE. + /// + /// @param fov Expressed in radians. + /// @param width Width of the viewport + /// @param height Height of the viewport + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param far Specifies the distance from the viewer to the far clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> perspectiveFov( + T fov, T width, T height, T near, T far); + + /// Creates a matrix for a left handed, symmetric perspective-view frustum with far plane at infinite. + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspectiveLH( + T fovy, T aspect, T near); + + /// Creates a matrix for a right handed, symmetric perspective-view frustum with far plane at infinite. + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspectiveRH( + T fovy, T aspect, T near); + + /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite with default handedness. + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> infinitePerspective( + T fovy, T aspect, T near); + + /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping. + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> tweakedInfinitePerspective( + T fovy, T aspect, T near); + + /// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping. + /// + /// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians. + /// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height). + /// @param near Specifies the distance from the viewer to the near clipping plane (always positive). + /// @param ep Epsilon + /// + /// @tparam T A floating-point scalar type + template<typename T> + GLM_FUNC_DECL mat<4, 4, T, defaultp> tweakedInfinitePerspective( + T fovy, T aspect, T near, T ep); + + /// @} +}//namespace glm + +#include "matrix_clip_space.inl" |