diff options
Diffstat (limited to '3rdparty/glfw/source/deps/linmath.h')
-rw-r--r-- | 3rdparty/glfw/source/deps/linmath.h | 606 |
1 files changed, 0 insertions, 606 deletions
diff --git a/3rdparty/glfw/source/deps/linmath.h b/3rdparty/glfw/source/deps/linmath.h deleted file mode 100644 index 5c80265..0000000 --- a/3rdparty/glfw/source/deps/linmath.h +++ /dev/null @@ -1,606 +0,0 @@ -#ifndef LINMATH_H -#define LINMATH_H - -#include <string.h> -#include <math.h> -#include <string.h> - -/* 2021-03-21 Camilla Löwy <[email protected]> - * - Replaced double constants with float equivalents - */ - -#ifdef LINMATH_NO_INLINE -#define LINMATH_H_FUNC static -#else -#define LINMATH_H_FUNC static inline -#endif - -#define LINMATH_H_DEFINE_VEC(n) \ -typedef float vec##n[n]; \ -LINMATH_H_FUNC void vec##n##_add(vec##n r, vec##n const a, vec##n const b) \ -{ \ - int i; \ - for(i=0; i<n; ++i) \ - r[i] = a[i] + b[i]; \ -} \ -LINMATH_H_FUNC void vec##n##_sub(vec##n r, vec##n const a, vec##n const b) \ -{ \ - int i; \ - for(i=0; i<n; ++i) \ - r[i] = a[i] - b[i]; \ -} \ -LINMATH_H_FUNC void vec##n##_scale(vec##n r, vec##n const v, float const s) \ -{ \ - int i; \ - for(i=0; i<n; ++i) \ - r[i] = v[i] * s; \ -} \ -LINMATH_H_FUNC float vec##n##_mul_inner(vec##n const a, vec##n const b) \ -{ \ - float p = 0.f; \ - int i; \ - for(i=0; i<n; ++i) \ - p += b[i]*a[i]; \ - return p; \ -} \ -LINMATH_H_FUNC float vec##n##_len(vec##n const v) \ -{ \ - return sqrtf(vec##n##_mul_inner(v,v)); \ -} \ -LINMATH_H_FUNC void vec##n##_norm(vec##n r, vec##n const v) \ -{ \ - float k = 1.f / vec##n##_len(v); \ - vec##n##_scale(r, v, k); \ -} \ -LINMATH_H_FUNC void vec##n##_min(vec##n r, vec##n const a, vec##n const b) \ -{ \ - int i; \ - for(i=0; i<n; ++i) \ - r[i] = a[i]<b[i] ? a[i] : b[i]; \ -} \ -LINMATH_H_FUNC void vec##n##_max(vec##n r, vec##n const a, vec##n const b) \ -{ \ - int i; \ - for(i=0; i<n; ++i) \ - r[i] = a[i]>b[i] ? a[i] : b[i]; \ -} \ -LINMATH_H_FUNC void vec##n##_dup(vec##n r, vec##n const src) \ -{ \ - int i; \ - for(i=0; i<n; ++i) \ - r[i] = src[i]; \ -} - -LINMATH_H_DEFINE_VEC(2) -LINMATH_H_DEFINE_VEC(3) -LINMATH_H_DEFINE_VEC(4) - -LINMATH_H_FUNC void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b) -{ - r[0] = a[1]*b[2] - a[2]*b[1]; - r[1] = a[2]*b[0] - a[0]*b[2]; - r[2] = a[0]*b[1] - a[1]*b[0]; -} - -LINMATH_H_FUNC void vec3_reflect(vec3 r, vec3 const v, vec3 const n) -{ - float p = 2.f * vec3_mul_inner(v, n); - int i; - for(i=0;i<3;++i) - r[i] = v[i] - p*n[i]; -} - -LINMATH_H_FUNC void vec4_mul_cross(vec4 r, vec4 const a, vec4 const b) -{ - r[0] = a[1]*b[2] - a[2]*b[1]; - r[1] = a[2]*b[0] - a[0]*b[2]; - r[2] = a[0]*b[1] - a[1]*b[0]; - r[3] = 1.f; -} - -LINMATH_H_FUNC void vec4_reflect(vec4 r, vec4 const v, vec4 const n) -{ - float p = 2.f*vec4_mul_inner(v, n); - int i; - for(i=0;i<4;++i) - r[i] = v[i] - p*n[i]; -} - -typedef vec4 mat4x4[4]; -LINMATH_H_FUNC void mat4x4_identity(mat4x4 M) -{ - int i, j; - for(i=0; i<4; ++i) - for(j=0; j<4; ++j) - M[i][j] = i==j ? 1.f : 0.f; -} -LINMATH_H_FUNC void mat4x4_dup(mat4x4 M, mat4x4 const N) -{ - int i; - for(i=0; i<4; ++i) - vec4_dup(M[i], N[i]); -} -LINMATH_H_FUNC void mat4x4_row(vec4 r, mat4x4 const M, int i) -{ - int k; - for(k=0; k<4; ++k) - r[k] = M[k][i]; -} -LINMATH_H_FUNC void mat4x4_col(vec4 r, mat4x4 const M, int i) -{ - int k; - for(k=0; k<4; ++k) - r[k] = M[i][k]; -} -LINMATH_H_FUNC void mat4x4_transpose(mat4x4 M, mat4x4 const N) -{ - // Note: if M and N are the same, the user has to - // explicitly make a copy of M and set it to N. - int i, j; - for(j=0; j<4; ++j) - for(i=0; i<4; ++i) - M[i][j] = N[j][i]; -} -LINMATH_H_FUNC void mat4x4_add(mat4x4 M, mat4x4 const a, mat4x4 const b) -{ - int i; - for(i=0; i<4; ++i) - vec4_add(M[i], a[i], b[i]); -} -LINMATH_H_FUNC void mat4x4_sub(mat4x4 M, mat4x4 const a, mat4x4 const b) -{ - int i; - for(i=0; i<4; ++i) - vec4_sub(M[i], a[i], b[i]); -} -LINMATH_H_FUNC void mat4x4_scale(mat4x4 M, mat4x4 const a, float k) -{ - int i; - for(i=0; i<4; ++i) - vec4_scale(M[i], a[i], k); -} -LINMATH_H_FUNC void mat4x4_scale_aniso(mat4x4 M, mat4x4 const a, float x, float y, float z) -{ - vec4_scale(M[0], a[0], x); - vec4_scale(M[1], a[1], y); - vec4_scale(M[2], a[2], z); - vec4_dup(M[3], a[3]); -} -LINMATH_H_FUNC void mat4x4_mul(mat4x4 M, mat4x4 const a, mat4x4 const b) -{ - mat4x4 temp; - int k, r, c; - for(c=0; c<4; ++c) for(r=0; r<4; ++r) { - temp[c][r] = 0.f; - for(k=0; k<4; ++k) - temp[c][r] += a[k][r] * b[c][k]; - } - mat4x4_dup(M, temp); -} -LINMATH_H_FUNC void mat4x4_mul_vec4(vec4 r, mat4x4 const M, vec4 const v) -{ - int i, j; - for(j=0; j<4; ++j) { - r[j] = 0.f; - for(i=0; i<4; ++i) - r[j] += M[i][j] * v[i]; - } -} -LINMATH_H_FUNC void mat4x4_translate(mat4x4 T, float x, float y, float z) -{ - mat4x4_identity(T); - T[3][0] = x; - T[3][1] = y; - T[3][2] = z; -} -LINMATH_H_FUNC void mat4x4_translate_in_place(mat4x4 M, float x, float y, float z) -{ - vec4 t = {x, y, z, 0}; - vec4 r; - int i; - for (i = 0; i < 4; ++i) { - mat4x4_row(r, M, i); - M[3][i] += vec4_mul_inner(r, t); - } -} -LINMATH_H_FUNC void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 const a, vec3 const b) -{ - int i, j; - for(i=0; i<4; ++i) for(j=0; j<4; ++j) - M[i][j] = i<3 && j<3 ? a[i] * b[j] : 0.f; -} -LINMATH_H_FUNC void mat4x4_rotate(mat4x4 R, mat4x4 const M, float x, float y, float z, float angle) -{ - float s = sinf(angle); - float c = cosf(angle); - vec3 u = {x, y, z}; - - if(vec3_len(u) > 1e-4) { - vec3_norm(u, u); - mat4x4 T; - mat4x4_from_vec3_mul_outer(T, u, u); - - mat4x4 S = { - { 0, u[2], -u[1], 0}, - {-u[2], 0, u[0], 0}, - { u[1], -u[0], 0, 0}, - { 0, 0, 0, 0} - }; - mat4x4_scale(S, S, s); - - mat4x4 C; - mat4x4_identity(C); - mat4x4_sub(C, C, T); - - mat4x4_scale(C, C, c); - - mat4x4_add(T, T, C); - mat4x4_add(T, T, S); - - T[3][3] = 1.f; - mat4x4_mul(R, M, T); - } else { - mat4x4_dup(R, M); - } -} -LINMATH_H_FUNC void mat4x4_rotate_X(mat4x4 Q, mat4x4 const M, float angle) -{ - float s = sinf(angle); - float c = cosf(angle); - mat4x4 R = { - {1.f, 0.f, 0.f, 0.f}, - {0.f, c, s, 0.f}, - {0.f, -s, c, 0.f}, - {0.f, 0.f, 0.f, 1.f} - }; - mat4x4_mul(Q, M, R); -} -LINMATH_H_FUNC void mat4x4_rotate_Y(mat4x4 Q, mat4x4 const M, float angle) -{ - float s = sinf(angle); - float c = cosf(angle); - mat4x4 R = { - { c, 0.f, -s, 0.f}, - { 0.f, 1.f, 0.f, 0.f}, - { s, 0.f, c, 0.f}, - { 0.f, 0.f, 0.f, 1.f} - }; - mat4x4_mul(Q, M, R); -} -LINMATH_H_FUNC void mat4x4_rotate_Z(mat4x4 Q, mat4x4 const M, float angle) -{ - float s = sinf(angle); - float c = cosf(angle); - mat4x4 R = { - { c, s, 0.f, 0.f}, - { -s, c, 0.f, 0.f}, - { 0.f, 0.f, 1.f, 0.f}, - { 0.f, 0.f, 0.f, 1.f} - }; - mat4x4_mul(Q, M, R); -} -LINMATH_H_FUNC void mat4x4_invert(mat4x4 T, mat4x4 const M) -{ - float s[6]; - float c[6]; - s[0] = M[0][0]*M[1][1] - M[1][0]*M[0][1]; - s[1] = M[0][0]*M[1][2] - M[1][0]*M[0][2]; - s[2] = M[0][0]*M[1][3] - M[1][0]*M[0][3]; - s[3] = M[0][1]*M[1][2] - M[1][1]*M[0][2]; - s[4] = M[0][1]*M[1][3] - M[1][1]*M[0][3]; - s[5] = M[0][2]*M[1][3] - M[1][2]*M[0][3]; - - c[0] = M[2][0]*M[3][1] - M[3][0]*M[2][1]; - c[1] = M[2][0]*M[3][2] - M[3][0]*M[2][2]; - c[2] = M[2][0]*M[3][3] - M[3][0]*M[2][3]; - c[3] = M[2][1]*M[3][2] - M[3][1]*M[2][2]; - c[4] = M[2][1]*M[3][3] - M[3][1]*M[2][3]; - c[5] = M[2][2]*M[3][3] - M[3][2]*M[2][3]; - - /* Assumes it is invertible */ - float idet = 1.0f/( s[0]*c[5]-s[1]*c[4]+s[2]*c[3]+s[3]*c[2]-s[4]*c[1]+s[5]*c[0] ); - - T[0][0] = ( M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet; - T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet; - T[0][2] = ( M[3][1] * s[5] - M[3][2] * s[4] + M[3][3] * s[3]) * idet; - T[0][3] = (-M[2][1] * s[5] + M[2][2] * s[4] - M[2][3] * s[3]) * idet; - - T[1][0] = (-M[1][0] * c[5] + M[1][2] * c[2] - M[1][3] * c[1]) * idet; - T[1][1] = ( M[0][0] * c[5] - M[0][2] * c[2] + M[0][3] * c[1]) * idet; - T[1][2] = (-M[3][0] * s[5] + M[3][2] * s[2] - M[3][3] * s[1]) * idet; - T[1][3] = ( M[2][0] * s[5] - M[2][2] * s[2] + M[2][3] * s[1]) * idet; - - T[2][0] = ( M[1][0] * c[4] - M[1][1] * c[2] + M[1][3] * c[0]) * idet; - T[2][1] = (-M[0][0] * c[4] + M[0][1] * c[2] - M[0][3] * c[0]) * idet; - T[2][2] = ( M[3][0] * s[4] - M[3][1] * s[2] + M[3][3] * s[0]) * idet; - T[2][3] = (-M[2][0] * s[4] + M[2][1] * s[2] - M[2][3] * s[0]) * idet; - - T[3][0] = (-M[1][0] * c[3] + M[1][1] * c[1] - M[1][2] * c[0]) * idet; - T[3][1] = ( M[0][0] * c[3] - M[0][1] * c[1] + M[0][2] * c[0]) * idet; - T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet; - T[3][3] = ( M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet; -} -LINMATH_H_FUNC void mat4x4_orthonormalize(mat4x4 R, mat4x4 const M) -{ - mat4x4_dup(R, M); - float s = 1.f; - vec3 h; - - vec3_norm(R[2], R[2]); - - s = vec3_mul_inner(R[1], R[2]); - vec3_scale(h, R[2], s); - vec3_sub(R[1], R[1], h); - vec3_norm(R[1], R[1]); - - s = vec3_mul_inner(R[0], R[2]); - vec3_scale(h, R[2], s); - vec3_sub(R[0], R[0], h); - - s = vec3_mul_inner(R[0], R[1]); - vec3_scale(h, R[1], s); - vec3_sub(R[0], R[0], h); - vec3_norm(R[0], R[0]); -} - -LINMATH_H_FUNC void mat4x4_frustum(mat4x4 M, float l, float r, float b, float t, float n, float f) -{ - M[0][0] = 2.f*n/(r-l); - M[0][1] = M[0][2] = M[0][3] = 0.f; - - M[1][1] = 2.f*n/(t-b); - M[1][0] = M[1][2] = M[1][3] = 0.f; - - M[2][0] = (r+l)/(r-l); - M[2][1] = (t+b)/(t-b); - M[2][2] = -(f+n)/(f-n); - M[2][3] = -1.f; - - M[3][2] = -2.f*(f*n)/(f-n); - M[3][0] = M[3][1] = M[3][3] = 0.f; -} -LINMATH_H_FUNC void mat4x4_ortho(mat4x4 M, float l, float r, float b, float t, float n, float f) -{ - M[0][0] = 2.f/(r-l); - M[0][1] = M[0][2] = M[0][3] = 0.f; - - M[1][1] = 2.f/(t-b); - M[1][0] = M[1][2] = M[1][3] = 0.f; - - M[2][2] = -2.f/(f-n); - M[2][0] = M[2][1] = M[2][3] = 0.f; - - M[3][0] = -(r+l)/(r-l); - M[3][1] = -(t+b)/(t-b); - M[3][2] = -(f+n)/(f-n); - M[3][3] = 1.f; -} -LINMATH_H_FUNC void mat4x4_perspective(mat4x4 m, float y_fov, float aspect, float n, float f) -{ - /* NOTE: Degrees are an unhandy unit to work with. - * linmath.h uses radians for everything! */ - float const a = 1.f / tanf(y_fov / 2.f); - - m[0][0] = a / aspect; - m[0][1] = 0.f; - m[0][2] = 0.f; - m[0][3] = 0.f; - - m[1][0] = 0.f; - m[1][1] = a; - m[1][2] = 0.f; - m[1][3] = 0.f; - - m[2][0] = 0.f; - m[2][1] = 0.f; - m[2][2] = -((f + n) / (f - n)); - m[2][3] = -1.f; - - m[3][0] = 0.f; - m[3][1] = 0.f; - m[3][2] = -((2.f * f * n) / (f - n)); - m[3][3] = 0.f; -} -LINMATH_H_FUNC void mat4x4_look_at(mat4x4 m, vec3 const eye, vec3 const center, vec3 const up) -{ - /* Adapted from Android's OpenGL Matrix.java. */ - /* See the OpenGL GLUT documentation for gluLookAt for a description */ - /* of the algorithm. We implement it in a straightforward way: */ - - /* TODO: The negation of of can be spared by swapping the order of - * operands in the following cross products in the right way. */ - vec3 f; - vec3_sub(f, center, eye); - vec3_norm(f, f); - - vec3 s; - vec3_mul_cross(s, f, up); - vec3_norm(s, s); - - vec3 t; - vec3_mul_cross(t, s, f); - - m[0][0] = s[0]; - m[0][1] = t[0]; - m[0][2] = -f[0]; - m[0][3] = 0.f; - - m[1][0] = s[1]; - m[1][1] = t[1]; - m[1][2] = -f[1]; - m[1][3] = 0.f; - - m[2][0] = s[2]; - m[2][1] = t[2]; - m[2][2] = -f[2]; - m[2][3] = 0.f; - - m[3][0] = 0.f; - m[3][1] = 0.f; - m[3][2] = 0.f; - m[3][3] = 1.f; - - mat4x4_translate_in_place(m, -eye[0], -eye[1], -eye[2]); -} - -typedef float quat[4]; -#define quat_add vec4_add -#define quat_sub vec4_sub -#define quat_norm vec4_norm -#define quat_scale vec4_scale -#define quat_mul_inner vec4_mul_inner - -LINMATH_H_FUNC void quat_identity(quat q) -{ - q[0] = q[1] = q[2] = 0.f; - q[3] = 1.f; -} -LINMATH_H_FUNC void quat_mul(quat r, quat const p, quat const q) -{ - vec3 w; - vec3_mul_cross(r, p, q); - vec3_scale(w, p, q[3]); - vec3_add(r, r, w); - vec3_scale(w, q, p[3]); - vec3_add(r, r, w); - r[3] = p[3]*q[3] - vec3_mul_inner(p, q); -} -LINMATH_H_FUNC void quat_conj(quat r, quat const q) -{ - int i; - for(i=0; i<3; ++i) - r[i] = -q[i]; - r[3] = q[3]; -} -LINMATH_H_FUNC void quat_rotate(quat r, float angle, vec3 const axis) { - vec3 axis_norm; - vec3_norm(axis_norm, axis); - float s = sinf(angle / 2); - float c = cosf(angle / 2); - vec3_scale(r, axis_norm, s); - r[3] = c; -} -LINMATH_H_FUNC void quat_mul_vec3(vec3 r, quat const q, vec3 const v) -{ -/* - * Method by Fabian 'ryg' Giessen (of Farbrausch) -t = 2 * cross(q.xyz, v) -v' = v + q.w * t + cross(q.xyz, t) - */ - vec3 t; - vec3 q_xyz = {q[0], q[1], q[2]}; - vec3 u = {q[0], q[1], q[2]}; - - vec3_mul_cross(t, q_xyz, v); - vec3_scale(t, t, 2); - - vec3_mul_cross(u, q_xyz, t); - vec3_scale(t, t, q[3]); - - vec3_add(r, v, t); - vec3_add(r, r, u); -} -LINMATH_H_FUNC void mat4x4_from_quat(mat4x4 M, quat const q) -{ - float a = q[3]; - float b = q[0]; - float c = q[1]; - float d = q[2]; - float a2 = a*a; - float b2 = b*b; - float c2 = c*c; - float d2 = d*d; - - M[0][0] = a2 + b2 - c2 - d2; - M[0][1] = 2.f*(b*c + a*d); - M[0][2] = 2.f*(b*d - a*c); - M[0][3] = 0.f; - - M[1][0] = 2*(b*c - a*d); - M[1][1] = a2 - b2 + c2 - d2; - M[1][2] = 2.f*(c*d + a*b); - M[1][3] = 0.f; - - M[2][0] = 2.f*(b*d + a*c); - M[2][1] = 2.f*(c*d - a*b); - M[2][2] = a2 - b2 - c2 + d2; - M[2][3] = 0.f; - - M[3][0] = M[3][1] = M[3][2] = 0.f; - M[3][3] = 1.f; -} - -LINMATH_H_FUNC void mat4x4o_mul_quat(mat4x4 R, mat4x4 const M, quat const q) -{ -/* XXX: The way this is written only works for orthogonal matrices. */ -/* TODO: Take care of non-orthogonal case. */ - quat_mul_vec3(R[0], q, M[0]); - quat_mul_vec3(R[1], q, M[1]); - quat_mul_vec3(R[2], q, M[2]); - - R[3][0] = R[3][1] = R[3][2] = 0.f; - R[0][3] = M[0][3]; - R[1][3] = M[1][3]; - R[2][3] = M[2][3]; - R[3][3] = M[3][3]; // typically 1.0, but here we make it general -} -LINMATH_H_FUNC void quat_from_mat4x4(quat q, mat4x4 const M) -{ - float r=0.f; - int i; - - int perm[] = { 0, 1, 2, 0, 1 }; - int *p = perm; - - for(i = 0; i<3; i++) { - float m = M[i][i]; - if( m < r ) - continue; - m = r; - p = &perm[i]; - } - - r = sqrtf(1.f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]] ); - - if(r < 1e-6) { - q[0] = 1.f; - q[1] = q[2] = q[3] = 0.f; - return; - } - - q[0] = r/2.f; - q[1] = (M[p[0]][p[1]] - M[p[1]][p[0]])/(2.f*r); - q[2] = (M[p[2]][p[0]] - M[p[0]][p[2]])/(2.f*r); - q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]])/(2.f*r); -} - -LINMATH_H_FUNC void mat4x4_arcball(mat4x4 R, mat4x4 const M, vec2 const _a, vec2 const _b, float s) -{ - vec2 a; memcpy(a, _a, sizeof(a)); - vec2 b; memcpy(b, _b, sizeof(b)); - - float z_a = 0.f; - float z_b = 0.f; - - if(vec2_len(a) < 1.f) { - z_a = sqrtf(1.f - vec2_mul_inner(a, a)); - } else { - vec2_norm(a, a); - } - - if(vec2_len(b) < 1.f) { - z_b = sqrtf(1.f - vec2_mul_inner(b, b)); - } else { - vec2_norm(b, b); - } - - vec3 a_ = {a[0], a[1], z_a}; - vec3 b_ = {b[0], b[1], z_b}; - - vec3 c_; - vec3_mul_cross(c_, a_, b_); - - float const angle = acos(vec3_mul_inner(a_, b_)) * s; - mat4x4_rotate(R, M, c_[0], c_[1], c_[2], angle); -} -#endif |