aboutsummaryrefslogtreecommitdiff
path: root/source/10-common
diff options
context:
space:
mode:
authorrtk0c <[email protected]>2023-10-19 22:50:07 -0700
committerrtk0c <[email protected]>2025-08-16 11:31:16 -0700
commit297232d21594b138bb368a42b5b0d085ff9ed6aa (patch)
tree075d5407e1e12a9d35cbee6e4c20ad34e0765c42 /source/10-common
parentd5cd34ff69f7fd134d5450696f298af1a864afbc (diff)
The great renaming: switch to "module style"
Diffstat (limited to 'source/10-common')
-rw-r--r--source/10-common/Color.hpp148
-rw-r--r--source/10-common/DtoHelper.hpp10
-rw-r--r--source/10-common/Enum.hpp110
-rw-r--r--source/10-common/Log.cpp116
-rw-r--r--source/10-common/Log.hpp55
-rw-r--r--source/10-common/LookupTable.hpp64
-rw-r--r--source/10-common/Macros.hpp31
-rw-r--r--source/10-common/OpaqueIterator.hpp31
-rw-r--r--source/10-common/PodVector.hpp297
-rw-r--r--source/10-common/RTTI.hpp44
-rw-r--r--source/10-common/RapidJsonHelper.hpp114
-rw-r--r--source/10-common/RcPtr.hpp120
-rw-r--r--source/10-common/Rect.hpp164
-rw-r--r--source/10-common/RingBuffer.hpp191
-rw-r--r--source/10-common/ScopeGuard.hpp60
-rw-r--r--source/10-common/SmallVector.cpp145
-rw-r--r--source/10-common/SmallVector.hpp1332
-rw-r--r--source/10-common/StbImplementations.c14
-rw-r--r--source/10-common/Type2ObjectMap.hpp38
-rw-r--r--source/10-common/TypeTraits.hpp27
-rw-r--r--source/10-common/Uid.cpp70
-rw-r--r--source/10-common/Uid.hpp46
-rw-r--r--source/10-common/Utils.cpp130
-rw-r--r--source/10-common/Utils.hpp77
-rw-r--r--source/10-common/YCombinator.hpp14
25 files changed, 0 insertions, 3448 deletions
diff --git a/source/10-common/Color.hpp b/source/10-common/Color.hpp
deleted file mode 100644
index ef0c5a9..0000000
--- a/source/10-common/Color.hpp
+++ /dev/null
@@ -1,148 +0,0 @@
-#pragma once
-
-#include "Utils.hpp"
-
-#include <algorithm>
-#include <cstdint>
-#include <glm/glm.hpp>
-#include <limits>
-
-class HsvColor;
-class RgbaColor {
-public:
- uint8_t r;
- uint8_t g;
- uint8_t b;
- uint8_t a;
-
-public:
- constexpr RgbaColor() noexcept
- : r{ 255 }
- , g{ 255 }
- , b{ 255 }
- , a{ 255 } {
- }
-
- constexpr RgbaColor(float r, float g, float b, float a = 1.0f) noexcept
- : r{ static_cast<uint8_t>(r * 255.0f) }
- , g{ static_cast<uint8_t>(g * 255.0f) }
- , b{ static_cast<uint8_t>(b * 255.0f) }
- , a{ static_cast<uint8_t>(a * 255.0f) } {
- }
-
- constexpr RgbaColor(int r, int g, int b, int a = 255) noexcept
- : r{ static_cast<uint8_t>(r & 0xFF) }
- , g{ static_cast<uint8_t>(g & 0xFF) }
- , b{ static_cast<uint8_t>(b & 0xFF) }
- , a{ static_cast<uint8_t>(a & 0xFF) } {
- }
-
- constexpr RgbaColor(uint32_t rgba) noexcept
- : r{ static_cast<uint8_t>((rgba >> 0) & 0xFF) }
- , g{ static_cast<uint8_t>((rgba >> 8) & 0xFF) }
- , b{ static_cast<uint8_t>((rgba >> 16) & 0xFF) }
- , a{ static_cast<uint8_t>((rgba >> 24) & 0xFF) } {
- }
-
- constexpr uint32_t GetScalar() const noexcept {
- uint32_t res = 0;
- res |= r << 0;
- res |= g << 8;
- res |= b << 16;
- res |= a << 24;
- return res;
- }
-
- constexpr void SetScalar(uint32_t scalar) noexcept {
- r = (scalar >> 0) & 0xFF;
- g = (scalar >> 8) & 0xFF;
- b = (scalar >> 16) & 0xFF;
- a = (scalar >> 24) & 0xFF;
- }
-
- constexpr float GetNormalizedRed() const noexcept {
- return r / 255.0f;
- }
-
- constexpr float GetNormalizedGreen() const noexcept {
- return g / 255.0f;
- }
-
- constexpr float GetNormalizedBlue() const noexcept {
- return b / 255.0f;
- }
-
- constexpr float GetNormalizedAlpha() const noexcept {
- return a / 255.0f;
- }
-
- constexpr glm::ivec4 ToIVec() const noexcept {
- return { r, g, b, a };
- }
-
- constexpr glm::vec4 ToVec() const noexcept {
- return { GetNormalizedRed(), GetNormalizedGreen(), GetNormalizedBlue(), GetNormalizedAlpha() };
- }
-
- // Forward declaring because cyclic reference between RgbaColor and HsvColor
- constexpr HsvColor ToHsv() const noexcept;
-
- friend constexpr bool operator==(const RgbaColor&, const RgbaColor&) noexcept = default;
-};
-
-constexpr RgbaColor kXAxisColor(0xFF, 0x80, 0x80, 0xFF);
-constexpr RgbaColor kYAxisColor(0x80, 0xFF, 0x80, 0xFF);
-constexpr RgbaColor kZAxisColor(0x80, 0x80, 0xFF, 0xFF);
-
-class HsvColor {
-public:
- float h;
- float s;
- float v;
- float a;
-
-public:
- constexpr HsvColor() noexcept
- : h{ 0.0f }
- , s{ 0.0f }
- , v{ 1.0f }
- , a{ 1.0f } {
- }
-
- constexpr HsvColor(float h, float s, float v, float a) noexcept
- : h{ h }
- , s{ s }
- , v{ v }
- , a{ a } {
- }
-
- // Forward declaring because cyclic reference between RgbaColor and HsvColor
- constexpr RgbaColor ToRgba() const noexcept;
-};
-
-constexpr HsvColor RgbaColor::ToHsv() const noexcept {
- float r = GetNormalizedRed();
- float g = GetNormalizedBlue();
- float b = GetNormalizedGreen();
- float a = GetNormalizedAlpha();
-
- auto p = g < b ? glm::vec4(b, g, -1, 2.0f / 3.0f) : glm::vec4(g, b, 0, -1.0f / 3.0f);
- auto q = r < p.x ? glm::vec4(p.x, p.y, p.w, r) : glm::vec4(r, p.y, p.z, p.x);
- float c = q.x - std::min(q.w, q.y);
- float h = Utils::Abs((q.w - q.y) / (6 * c + std::numeric_limits<float>::epsilon()) + q.z);
-
- glm::vec3 hcv{ h, c, q.x };
- float s = hcv.y / (hcv.z + std::numeric_limits<float>::epsilon());
- return HsvColor(hcv.x, s, hcv.z, a);
-}
-
-constexpr RgbaColor HsvColor::ToRgba() const noexcept {
- float r = Utils::Abs(h * 6 - 3) - 1;
- float g = 2 - Utils::Abs(h * 6 - 2);
- float b = 2 - Utils::Abs(h * 6 - 4);
-
- auto rgb = glm::vec3{ std::clamp(r, 0.0f, 1.0f), std::clamp(g, 0.0f, 1.0f), std::clamp(b, 0.0f, 1.0f) };
- auto vc = (rgb - glm::vec3{ 0, 0, 0 }) * s + glm::vec3{ 1, 1, 1 } * v;
-
- return RgbaColor(vc.x, vc.y, vc.z, a);
-}
diff --git a/source/10-common/DtoHelper.hpp b/source/10-common/DtoHelper.hpp
deleted file mode 100644
index 871f9c6..0000000
--- a/source/10-common/DtoHelper.hpp
+++ /dev/null
@@ -1,10 +0,0 @@
-#pragma once
-
-#include <rapidjson/document.h>
-#include <json_dto/pub.hpp>
-
-namespace json_dto {
-
-
-
-}
diff --git a/source/10-common/Enum.hpp b/source/10-common/Enum.hpp
deleted file mode 100644
index 7afbe8e..0000000
--- a/source/10-common/Enum.hpp
+++ /dev/null
@@ -1,110 +0,0 @@
-#pragma once
-
-#include <initializer_list>
-#include <type_traits>
-
-template <typename TEnum>
-class EnumFlags {
-public:
- using Enum = TEnum;
- using Underlying = std::underlying_type_t<TEnum>;
-
-private:
- Underlying mValue;
-
-public:
- EnumFlags()
- : mValue{ 0 } {
- }
-
- EnumFlags(TEnum e)
- : mValue{ static_cast<Underlying>(1) << static_cast<Underlying>(e) } {
- }
-
- bool IsSet(EnumFlags mask) const {
- return (mValue & mask.mValue) == mask.mValue;
- }
-
- bool IsSet(std::initializer_list<TEnum> enums) {
- EnumFlags flags;
- for (auto& e : enums) {
- flags.mValue |= static_cast<Underlying>(e);
- }
- return IsSet(flags);
- }
-
- bool IsSetExclusive(EnumFlags mask) const {
- return mValue == mask.mValue;
- }
-
- bool IsSetExclusive(std::initializer_list<TEnum> enums) {
- EnumFlags flags;
- for (auto& e : enums) {
- flags.mValue |= static_cast<Underlying>(e);
- }
- return IsSetExclusive(flags);
- }
-
- void SetOn(EnumFlags mask) {
- mValue |= mask.mValue;
- }
-
- void SetOff(EnumFlags mask) {
- mValue &= ~mask.mValue;
- }
-
- void Set(EnumFlags mask, bool enabled) {
- if (enabled) {
- SetOn(mask);
- } else {
- SetOff(mask);
- }
- }
-
- EnumFlags& operator|=(EnumFlags that) const {
- mValue |= that.mValue;
- return *this;
- }
-
- EnumFlags& operator&=(EnumFlags that) const {
- mValue &= that.mValue;
- return *this;
- }
-
- EnumFlags& operator^=(EnumFlags that) const {
- mValue ^= that.mValue;
- return *this;
- }
-
- EnumFlags& operator|=(TEnum e) const {
- mValue |= 1 << static_cast<Underlying>(e);
- return *this;
- }
-
- EnumFlags& operator&=(TEnum e) const {
- mValue &= 1 << static_cast<Underlying>(e);
- return *this;
- }
-
- EnumFlags& operator^=(TEnum e) const {
- mValue ^= 1 << static_cast<Underlying>(e);
- return *this;
- }
-
- EnumFlags operator|(EnumFlags that) const { return EnumFlags(mValue | that.mValue); }
- EnumFlags operator&(EnumFlags that) const { return EnumFlags(mValue & that.mValue); }
- EnumFlags operator^(EnumFlags that) const { return EnumFlags(mValue ^ that.mValue); }
-
- EnumFlags operator|(TEnum e) const { return EnumFlags(mValue | 1 << static_cast<Underlying>(e)); }
- EnumFlags operator&(TEnum e) const { return EnumFlags(mValue & 1 << static_cast<Underlying>(e)); }
- EnumFlags operator^(TEnum e) const { return EnumFlags(mValue ^ 1 << static_cast<Underlying>(e)); }
-
- EnumFlags operator~() const { return EnumFlags(~mValue); }
-};
-
-// Helper class for enumerating enum elements for ImGui::Begin/EndCombo
-template <typename TEnum>
-struct EnumElement {
- const char* name;
- TEnum value;
-};
diff --git a/source/10-common/Log.cpp b/source/10-common/Log.cpp
deleted file mode 100644
index 83d81e9..0000000
--- a/source/10-common/Log.cpp
+++ /dev/null
@@ -1,116 +0,0 @@
-#include "Log.hpp"
-
-#include "Macros.hpp"
-
-#include <robin_hood.h>
-#include <algorithm>
-#include <cstdio>
-
-namespace ProjectBrussel_UNITY_ID {
-using namespace Log;
-
-const char* MapMessageLevelToString(MessageLevel level) {
- switch (level) {
- using enum MessageLevel;
- case Debug: return "DEBUG";
- case Info: return "INFO";
- case Warning: return "WARN";
- case Error: return "ERROR";
- default: UNREACHABLE;
- }
-}
-
-void PrintMessage(const Message& msg) {
- using namespace std::chrono;
-
- auto t = system_clock::to_time_t(msg.time);
- char timeStr[128];
- strftime(timeStr, sizeof(timeStr), "%H:%M:%S", localtime(&t));
- printf("[%s][%s][%s:%u] %.*s\n",
- MapMessageLevelToString(msg.level),
- timeStr,
- msg.srcLoc.function_name(),
- msg.srcLoc.line(),
- PRINTF_STRING_VIEW(msg.text));
-}
-
-MessageBufferId gNextBufferId = 0;
-robin_hood::unordered_map<MessageBufferId, MessageBuffer*> gBuffers;
-} // namespace ProjectBrussel_UNITY_ID
-
-namespace Log {
-bool gPrintToStdOut = true;
-#if BRUSSEL_DEV_ENV
-MessageBuffer gDefaultBuffer;
-MessageBufferId gDefaultBufferId;
-#endif
-} // namespace Log
-
-Log::MessageBufferId Log::RegisterBuffer(MessageBuffer& buffer) {
- using namespace ProjectBrussel_UNITY_ID;
-
- auto id = gNextBufferId++;
- gBuffers.try_emplace(id, &buffer);
- return id;
-}
-
-void Log::UnregisterBuffer(MessageBufferId id) {
- using namespace ProjectBrussel_UNITY_ID;
-
- gBuffers.erase(id);
-}
-
-Log::MessageBuffer* Log::GetBuffer(MessageBufferId id) {
- using namespace ProjectBrussel_UNITY_ID;
-
- auto iter = gBuffers.find(id);
- if (iter != gBuffers.end()) {
- return iter->second;
- } else {
- return nullptr;
- }
-}
-
-void Log::DumpRegisteredBuffers() {
- using namespace ProjectBrussel_UNITY_ID;
-
- puts("================ BEGIN LOG BUFFER DUMP ================");
- for (const auto& [id, buffer] : gBuffers) {
- printf("Buffer #%d at %p\n", id, buffer);
- printf("Buffer size: %zu\n", buffer->messages.capacity());
- bool needsWrapAround = buffer->messages.GetHeadIdx() >= buffer->messages.GetTailIdx();
- if (needsWrapAround) {
- printf("Fill size: %zu in [%zu,%zu) and [0,%zu)\n",
- buffer->messages.size(),
- // First chunk: [begin,end)
- buffer->messages.GetHeadIdx(),
- buffer->messages.capacity(),
- // Second chunk: [0,end)
- buffer->messages.GetTailIdx());
- } else {
- printf("Fill size: %zu in [%zu,%zu)\n",
- buffer->messages.size(),
- // [begin,end)
- buffer->messages.GetHeadIdx(),
- buffer->messages.GetTailIdx());
- }
- for (const auto& msg : buffer->messages) {
- // Indent log messages in this buffer
- printf("\t");
- PrintMessage(msg);
- }
- }
- puts("================ END LOG BUFFER DUMP ================");
-}
-
-void Log::Add(const Message& msg) {
- using namespace ProjectBrussel_UNITY_ID;
-
- if (gPrintToStdOut) {
- PrintMessage(msg);
- }
-
- for (auto& [_, buffer] : gBuffers) {
- buffer->messages.push_back(msg);
- }
-}
diff --git a/source/10-common/Log.hpp b/source/10-common/Log.hpp
deleted file mode 100644
index aeba984..0000000
--- a/source/10-common/Log.hpp
+++ /dev/null
@@ -1,55 +0,0 @@
-#pragma once
-
-#include "RingBuffer.hpp"
-
-#include <fmt/format.h>
-#include <chrono>
-#include <source_location>
-#include <string_view>
-
-// NOTE: we keep this on one line so std::soruce_location reports the correct information
-#define GENERIC_LOG(lvl, fmtString, ...) Log::Add(Log::Message{ .level = lvl, .time = std::chrono::system_clock::now(), .srcLoc = std::source_location::current(), .text = fmt::format(fmtString __VA_OPT__(, ) __VA_ARGS__) })
-
-#define LOG_DEBUG(...) GENERIC_LOG(Log::MessageLevel::Debug, __VA_ARGS__)
-#define LOG_INFO(...) GENERIC_LOG(Log::MessageLevel::Info, __VA_ARGS__)
-#define LOG_WARNING(...) GENERIC_LOG(Log::MessageLevel::Warning, __VA_ARGS__)
-#define LOG_ERROR(...) GENERIC_LOG(Log::MessageLevel::Error, __VA_ARGS__)
-
-namespace Log {
-enum class MessageLevel {
- Debug,
- Info,
- Warning,
- Error,
-};
-
-struct Message {
- MessageLevel level;
- std::chrono::time_point<std::chrono::system_clock> time;
- std::source_location srcLoc;
- std::string text;
-};
-
-/// A mRing buffer of log messages for programmatic inspection at runtime.
-struct MessageBuffer {
- RingBuffer<Message> messages;
-};
-
-/// Unique ID identifying a currently registered MessageBuffer.
-using MessageBufferId = int;
-
-MessageBufferId RegisterBuffer(MessageBuffer& buffer);
-void UnregisterBuffer(MessageBufferId id);
-MessageBuffer* GetBuffer(MessageBufferId id);
-void DumpRegisteredBuffers();
-
-extern bool gPrintToStdOut;
-#if BRUSSEL_DEV_ENV
-// NOTE: initialized in main.cpp
-extern MessageBuffer gDefaultBuffer;
-extern MessageBufferId gDefaultBufferId;
-#endif
-
-// TODO improve this interface: don't copy std::string when there is in fact no MessageBuffer registered
-void Add(const Message& msg);
-} // namespace Log
diff --git a/source/10-common/LookupTable.hpp b/source/10-common/LookupTable.hpp
deleted file mode 100644
index 54548f2..0000000
--- a/source/10-common/LookupTable.hpp
+++ /dev/null
@@ -1,64 +0,0 @@
-#pragma once
-
-#include <robin_hood.h>
-#include <string_view>
-
-// BIDI stands for bi-directional
-#define BIDI_LUT_DECL(name, aType, aCount, bType, bCount) \
- int gLutBidi_##name##_A2B[aCount]; \
- int gLutBidi_##name##_B2A[bCount]; \
- using name##AType = aType; \
- using name##BType = bType; \
- void InitializeLutBidi##name()
-#define BIDI_LUT_MAP_FOR(name) \
- int* lutMappingA2B = gLutBidi_##name##_A2B; \
- int* lutMappingB2A = gLutBidi_##name##_B2A
-#define BIDI_LUT_MAP(from, to) \
- lutMappingA2B[from] = to; \
- lutMappingB2A[to] = from
-#define BIDI_LUT_INIT(name) InitializeLutBidi##name()
-#define BIDI_LUT_A2B_LOOKUP(name, from) (name##BType)(gLutBidi_##name##_A2B[from])
-#define BIDI_LUT_B2A_LOOKUP(name, to) (name##AType)(gLutBidi_##name##_B2A[to])
-
-// Forward string lookup
-#define FSTR_LUT_DECL(name, enumMinValue, enumMaxValue) \
- constexpr int kLutFwMinVal_##name = enumMinValue; \
- const char* gLutFw_##name[(int)enumMaxValue - (int)enumMinValue]; \
- void InitializeLutFw##name()
-#define FSTR_LUT_MAP_FOR(name) \
- const char** lutMapping = gLutFw_##name; \
- int lutMappingMinValue = kLutFwMinVal_##name
-#define FSTR_LUT_MAP(value, text) lutMapping[value - lutMappingMinValue] = text
-#define FSTR_LUT_MAP_ENUM(enumValue) FSTR_LUT_MAP(enumValue, #enumValue)
-#define FSTR_LUT_LOOKUP(name, enumValue) gLutFw_##name[enumValue - kLutFwMinVal_##name]
-#define FSTR_LUT_INIT(name) InitializeLutFw##name()
-
-// RSTR stands for reverse-string lookup
-#define RSTR_LUT_DECL(name, enumMinValue, enumMaxValue) \
- robin_hood::unordered_flat_map<std::string_view, decltype(enumMaxValue)> gLutRv_##name; \
- void InitializeLutRv##name()
-#define RSTR_LUT_MAP_FOR(name) auto& lutMapping = gLutRv_##name;
-#define RSTR_LUT_MAP(value, text) lutMapping.insert_or_assign(std::string_view(text), value);
-#define RSTR_LUT(name) gLutRv_##name
-#define BSTR_LUT_LOOKUP(name, string) gLutRv_##name.find(std::string_view(text))->second
-#define RSTR_LUT_INIT(name) InitializeLutRv##name()
-
-// BSTR stands for bi-directional string lookup
-#define BSTR_LUT_DECL(name, enumMinValue, enumMaxValue) \
- constexpr int kLutBstrMinVal_##name = enumMinValue; \
- const char* gLutBstr_##name##_V2S[(int)enumMaxValue - (int)enumMinValue]; \
- robin_hood::unordered_flat_map<std::string_view, decltype(enumMaxValue)> gLutBstr_##name##_S2V; \
- void InitializeLutBstr##name()
-#define BSTR_LUT_MAP_FOR(name) \
- const char** lutMappingV2S = gLutBstr_##name##_V2S; \
- auto& lutMappingS2V = gLutBstr_##name##_S2V; \
- int lutMappingMinValue = kLutBstrMinVal_##name
-#define BSTR_LUT_MAP(value, text) \
- lutMappingV2S[value - lutMappingMinValue] = text; \
- lutMappingS2V.insert_or_assign(std::string_view(text), value);
-#define BSTR_LUT_MAP_ENUM(enumValue) BSTR_LUT_MAP(enumValue, #enumValue)
-#define BSTR_LUT_V2S(name) gLutBstr_##name##_V2S
-#define BSTR_LUT_S2V(name) gLutBstr_##name##_S2V
-#define BSTR_LUT_V2S_LOOKUP(name, enumValue) gLutBstr_##name##_V2S[enumValue - kLutBstrMinVal_##name]
-#define BSTR_LUT_S2V_LOOKUP(name, string) gLutBstr_##name##_S2V.find(std::string_view(text))->second
-#define BSTR_LUT_INIT(name) InitializeLutBstr##name()
diff --git a/source/10-common/Macros.hpp b/source/10-common/Macros.hpp
deleted file mode 100644
index a255ada..0000000
--- a/source/10-common/Macros.hpp
+++ /dev/null
@@ -1,31 +0,0 @@
-#pragma once
-
-#define STRINGIFY_IMPL(text) #text
-#define STRINGIFY(text) STRINGIFY_IMPL(text)
-
-#define CONCAT_IMPL(a, b) a##b
-#define CONCAT(a, b) CONCAT_IMPL(a, b)
-#define CONCAT_3(a, b, c) CONCAT(a, CONCAT(b, c))
-#define CONCAT_4(a, b, c, d) CONCAT(CONCAT(a, b), CONCAT(c, d))
-
-#define UNIQUE_NAME(prefix) CONCAT(prefix, __COUNTER__)
-#define UNIQUE_NAME_LINE(prefix) CONCAT(prefix, __LINE__)
-#define DISCARD UNIQUE_NAME(_discard)
-
-#define UNUSED(x) (void)x;
-
-#define PRINTF_STRING_VIEW(s) (int)s.size(), s.data()
-
-#if defined(_MSC_VER)
-# define UNREACHABLE __assume(0)
-#elif defined(__GNUC__) || defined(__clang__)
-# define UNREACHABLE __builtin_unreachable()
-#else
-# define UNREACHABLE
-#endif
-
-#if _WIN32
-# define PLATFORM_PATH_STR "%ls"
-#else
-# define PLATFORM_PATH_STR "%s"
-#endif
diff --git a/source/10-common/OpaqueIterator.hpp b/source/10-common/OpaqueIterator.hpp
deleted file mode 100644
index 128cbc6..0000000
--- a/source/10-common/OpaqueIterator.hpp
+++ /dev/null
@@ -1,31 +0,0 @@
-#pragma once
-
-template <typename T>
-class IOpaqueIterator {
-public:
- virtual ~IOpaqueIterator() = default;
- virtual bool HasNext() const = 0;
- virtual T Next() = 0;
-};
-
-template <typename TContainer>
-class ContainerOpaqueIterator : public IOpaqueIterator<typename TContainer::reference_type> {
-private:
- typename TContainer::iterator mIter;
- typename TContainer::const_iterator mEnd;
-
-public:
- ContainerOpaqueIterator(TContainer& container)
- : mIter{ container.begin() }
- , mEnd{ container.end() } {}
-
- virtual bool HasNext() const override {
- return mIter != mEnd;
- }
-
- virtual typename TContainer::reference_type Next() override {
- auto result = *mIter;
- ++mIter;
- return result;
- }
-};
diff --git a/source/10-common/PodVector.hpp b/source/10-common/PodVector.hpp
deleted file mode 100644
index bd92e7d..0000000
--- a/source/10-common/PodVector.hpp
+++ /dev/null
@@ -1,297 +0,0 @@
-// File adapted from dear-imgui's ImVector, implemented in https://github.com/ocornut/imgUI/blob/master/imgui.h
-#pragma once
-
-#include <cassert>
-#include <cstddef>
-#include <cstdint>
-#include <cstdlib>
-#include <cstring>
-#include <span>
-
-template <typename T>
-class PodVector {
-public:
- using value_type = T;
- using iterator = value_type*;
- using const_iterator = const value_type*;
-
-private:
- int mSize;
- int mCapacity;
- T* mData;
-
-public:
- PodVector() {
- mSize = mCapacity = 0;
- mData = nullptr;
- }
-
- PodVector(const PodVector<T>& src) {
- mSize = mCapacity = 0;
- mData = nullptr;
- operator=(src);
- }
-
- PodVector<T>& operator=(const PodVector<T>& src) {
- clear();
- resize(src.mSize);
- std::memcpy(mData, src.mData, (size_t)mSize * sizeof(T));
- return *this;
- }
-
- PodVector(PodVector&& src) {
- mSize = src.mSize;
- mCapacity = src.mCapacity;
- mData = src.mData;
-
- src.mSize = src.mCapacity = 0;
- src.mData = nullptr;
- }
-
- PodVector& operator=(PodVector&& src) {
- if (this != &src) {
- std::free(mData);
-
- mSize = src.mSize;
- mCapacity = src.mCapacity;
- mData = src.mData;
-
- src.mSize = src.mCapacity = 0;
- src.mData = nullptr;
- }
- return *this;
- }
-
- ~PodVector() {
- std::free(mData);
- }
-
- bool empty() const { return mSize == 0; }
- int size() const { return mSize; }
- int size_in_bytes() const { return mSize * (int)sizeof(T); }
- int max_size() const { return 0x7FFFFFFF / (int)sizeof(T); }
- int capacity() const { return mCapacity; }
-
- T& operator[](int i) {
- assert(i >= 0 && i < mSize);
- return mData[i];
- }
-
- const T& operator[](int i) const {
- assert(i >= 0 && i < mSize);
- return mData[i];
- }
-
- void clear() {
- if (mData) {
- mSize = mCapacity = 0;
- std::free(mData);
- mData = nullptr;
- }
- }
-
- T* begin() { return mData; }
- const T* begin() const { return mData; }
- T* end() { return mData + mSize; }
- const T* end() const { return mData + mSize; }
-
- T* data() { return mData; }
-
- T& front() {
- assert(mSize > 0);
- return mData[0];
- }
-
- const T& front() const {
- assert(mSize > 0);
- return mData[0];
- }
-
- T& back() {
- assert(mSize > 0);
- return mData[mSize - 1];
- }
-
- const T& back() const {
- assert(mSize > 0);
- return mData[mSize - 1];
- }
-
- void swap(PodVector<T>& rhs) {
- int rhs_size = rhs.mSize;
- rhs.mSize = mSize;
- mSize = rhs_size;
- int rhs_cap = rhs.mCapacity;
- rhs.mCapacity = mCapacity;
- mCapacity = rhs_cap;
- T* rhs_mDataTmp = rhs.mData;
- rhs.mData = mData;
- mData = rhs_mDataTmp;
- }
-
- int grow_capacity(int sz) const {
- int newCapacity = mCapacity ? (mCapacity + mCapacity / 2) : 8;
- return newCapacity > sz ? newCapacity : sz;
- }
-
- void resize(int new_size) {
- if (new_size > mCapacity) reserve(grow_capacity(new_size));
- mSize = new_size;
- }
-
- void resize_more(int size) {
- resize(mSize + size);
- }
-
- void resize(int new_size, const T& v) {
- if (new_size > mCapacity) reserve(grow_capacity(new_size));
- if (new_size > mSize) {
- for (int n = mSize; n < new_size; n++) {
- std::memcpy(&mData[n], &v, sizeof(v));
- }
- }
- mSize = new_size;
- }
-
- void resize_more(int size, const T& v) {
- resize(mSize + size, v);
- }
-
- void shrink(int new_size) {
- assert(new_size <= mSize);
- mSize = new_size;
- }
-
- /// Resize a vector to a smaller mSize, guaranteed not to cause a reallocation
- void reserve(int newCapacity) {
- if (newCapacity <= mCapacity) return;
- auto tmp = (T*)std::malloc((size_t)newCapacity * sizeof(T));
- if (mData) {
- std::memcpy(tmp, mData, (size_t)mSize * sizeof(T));
- std::free(mData);
- }
- mData = tmp;
- mCapacity = newCapacity;
- }
-
- void reserve_more(int size) {
- reserve(mSize + size);
- }
-
- /// NB: It is illegal to call push_back/push_front/insert with a reference pointing inside the PodVector data itself! e.g. v.push_back(v[10]) is forbidden.
- void push_back(const T& v) {
- if (mSize == mCapacity) reserve(grow_capacity(mSize + 1));
- std::memcpy(&mData[mSize], &v, sizeof(v));
- mSize++;
- }
-
- void pop_back() {
- assert(mSize > 0);
- mSize--;
- }
-
- void push_front(const T& v) {
- if (mSize == 0) {
- push_back(v);
- } else {
- insert(mData, v);
- }
- }
-
- T* erase(const T* it) {
- assert(it >= mData && it < mData + mSize);
- const ptrdiff_t off = it - mData;
- std::memmove(mData + off, mData + off + 1, ((size_t)mSize - (size_t)off - 1) * sizeof(T));
- mSize--;
- return mData + off;
- }
-
- T* erase(const T* it, const T* it_last) {
- assert(it >= mData && it < mData + mSize && it_last > it && it_last <= mData + mSize);
- const ptrdiff_t count = it_last - it;
- const ptrdiff_t off = it - mData;
- std::memmove(mData + off, mData + off + count, ((size_t)mSize - (size_t)off - count) * sizeof(T));
- mSize -= (int)count;
- return mData + off;
- }
-
- T* erase_unsorted(const T* it) {
- assert(it >= mData && it < mData + mSize);
- const ptrdiff_t off = it - mData;
- if (it < mData + mSize - 1) std::memcpy(mData + off, mData + mSize - 1, sizeof(T));
- mSize--;
- return mData + off;
- }
-
- T* insert(const T* it, const T& v) {
- assert(it >= mData && it <= mData + mSize);
- const ptrdiff_t off = it - mData;
- if (mSize == mCapacity) reserve(grow_capacity(mSize + 1));
- if (off < (int)mSize) std::memmove(mData + off + 1, mData + off, ((size_t)mSize - (size_t)off) * sizeof(T));
- std::memcpy(&mData[off], &v, sizeof(v));
- mSize++;
- return mData + off;
- }
-
- bool contains(const T& v) const {
- const T* data = mData;
- const T* dataEnd = mData + mSize;
- while (data < dataEnd) {
- if (*data++ == v) return true;
- }
- return false;
- }
-
- T* find(const T& v) {
- T* data = mData;
- const T* dataEnd = mData + mSize;
- while (data < dataEnd)
- if (*data == v)
- break;
- else
- ++data;
- return data;
- }
-
- const T* find(const T& v) const {
- const T* data = mData;
- const T* dataEnd = mData + mSize;
- while (data < dataEnd)
- if (*data == v)
- break;
- else
- ++data;
- return data;
- }
-
- bool find_erase(const T& v) {
- const T* it = find(v);
- if (it < mData + mSize) {
- erase(it);
- return true;
- }
- return false;
- }
-
- bool find_erase_unsorted(const T& v) {
- const T* it = find(v);
- if (it < mData + mSize) {
- erase_unsorted(it);
- return true;
- }
- return false;
- }
-
- int index_from_ptr(const T* it) const {
- assert(it >= mData && it < mData + mSize);
- const ptrdiff_t off = it - mData;
- return (int)off;
- }
-
- // Custom utility functions
-
- std::span<T> as_span() { return { mData, (size_t)mSize }; }
- std::span<uint8_t> as_data_span() { return { (uint8_t*)mData, (size_t)mSize * sizeof(T) }; }
- std::span<const T> as_span() const { return { mData, (size_t)mSize }; }
- std::span<const uint8_t> as_data_span() const { return { (uint8_t*)mData, (size_t)mSize * sizeof(T) }; }
-};
diff --git a/source/10-common/RTTI.hpp b/source/10-common/RTTI.hpp
deleted file mode 100644
index bd9475b..0000000
--- a/source/10-common/RTTI.hpp
+++ /dev/null
@@ -1,44 +0,0 @@
-#pragma once
-
-#include <cassert>
-
-template <typename T, typename TBase>
-bool is_a(TBase* t) {
- assert(t != nullptr);
- return T::IsInstance(t);
-}
-
-template <typename T, typename TBase>
-bool is_a_nullable(TBase* t) {
- if (t) {
- return is_a<T, TBase>(t);
- } else {
- return false;
- }
-}
-
-template <typename T, typename TBase>
-T* dyn_cast(TBase* t) {
- assert(t != nullptr);
- if (T::IsInstance(t)) {
- return static_cast<T*>(t);
- } else {
- return nullptr;
- }
-}
-
-template <typename T, typename TBase>
-const T* dyn_cast(const TBase* t) {
- assert(t != nullptr);
- if (T::IsInstance(t)) {
- return static_cast<const T*>(t);
- } else {
- return nullptr;
- }
-}
-
-template <typename T, typename TBase>
-T* dyn_cast_nullable(TBase* t) {
- if (!t) return nullptr;
- return dyn_cast<T, TBase>(t);
-}
diff --git a/source/10-common/RapidJsonHelper.hpp b/source/10-common/RapidJsonHelper.hpp
deleted file mode 100644
index a992dbc..0000000
--- a/source/10-common/RapidJsonHelper.hpp
+++ /dev/null
@@ -1,114 +0,0 @@
-#pragma once
-
-#include <rapidjson/document.h>
-#include <cstring>
-#include <string>
-#include <string_view>
-
-#define BRUSSEL_JSON_GET(object, name, type, out, failAction) \
- { \
- auto it = (object).FindMember(name); \
- if (it == (object).MemberEnd()) failAction; \
- auto& value = it->value; \
- if (!value.Is<type>()) failAction; \
- (out) = value.Get<type>(); \
- }
-
-#define BRUSSEL_JSON_GET_DEFAULT(object, name, type, out, theDefault) \
- do { \
- auto it = (object).FindMember(name); \
- if (it == (object).MemberEnd()) { \
- (out) = theDefault; \
- break; \
- } \
- auto& value = it->value; \
- if (!value.Is<type>()) { \
- (out) = theDefault; \
- break; \
- } \
- (out) = value.Get<type>(); \
- } while (0);
-
-namespace rapidjson {
-
-inline const Value* GetProperty(const Value& value, std::string_view name) {
- for (auto it = value.MemberBegin(); it != value.MemberEnd(); ++it) {
- if (it->name.GetStringLength() != name.size()) continue;
- if (std::memcmp(it->name.GetString(), name.data(), name.size())) continue;
-
- return &it->value;
- }
- return nullptr;
-}
-
-inline const Value* GetProperty(const Value& value, Type type, std::string_view name) {
- for (auto it = value.MemberBegin(); it != value.MemberEnd(); ++it) {
- if (it->name.GetStringLength() != name.size()) continue;
- if (it->value.GetType() != type) continue;
- if (std::memcmp(it->name.GetString(), name.data(), name.size())) continue;
-
- return &it->value;
- }
- return nullptr;
-}
-
-inline std::string_view AsStringView(const Value& value) {
- return std::string_view(value.GetString(), value.GetStringLength());
-}
-
-inline std::string_view AsStringView(const GenericStringRef<char>& strRef) {
- return std::string_view(strRef.s, strRef.length);
-}
-
-inline std::string AsString(const Value& value) {
- return std::string(value.GetString(), value.GetStringLength());
-}
-
-inline std::string AsString(const GenericStringRef<char>& strRef) {
- return std::string(strRef.s, strRef.length);
-}
-
-// RapidJson itself already provides std::string and const char* overloads
-inline GenericStringRef<char> StringRef(std::string_view str) {
- return GenericStringRef<char>(
- str.data() ? str.data() : "",
- str.size());
-}
-
-template <typename TIter, typename TSentienl>
-rapidjson::Value WriteVectorPrimitives(rapidjson::Document& root, TIter begin, TSentienl end) {
- using TElement = typename TIter::value_type;
-
- rapidjson::Value list;
- while (begin != end) {
- if constexpr (std::is_same_v<TElement, std::string>) {
- auto& elm = *begin;
- list.PushBack(rapidjson::Value(elm.c_str(), elm.size()), root.GetAllocator());
- } else {
- list.PushBack(*begin, root.GetAllocator());
- }
- ++begin;
- }
- return list;
-}
-
-template <typename TContainer>
-bool ReadVectorPrimitives(const rapidjson::Value& value, TContainer& list) {
- using TElement = typename TContainer::value_type;
-
- if (!value.IsArray()) return false;
-
- list.reserve(value.Size());
- for (auto& elm : value.GetArray()) {
- if (!elm.Is<TElement>()) return {};
- list.push_back(elm.Get<TElement>());
- }
-
- return true;
-}
-
-} // namespace rapidjson
-
-inline rapidjson::GenericStringRef<char> operator""_rj_sv(const char* str, size_t len) {
- return rapidjson::StringRef(str, len);
-}
diff --git a/source/10-common/RcPtr.hpp b/source/10-common/RcPtr.hpp
deleted file mode 100644
index e3e420e..0000000
--- a/source/10-common/RcPtr.hpp
+++ /dev/null
@@ -1,120 +0,0 @@
-#pragma once
-
-#include "Macros.hpp"
-#include "TypeTraits.hpp"
-
-#include <cstddef>
-#include <cstdint>
-#include <optional>
-#include <type_traits>
-
-class RefCounted {
-public:
- // DO NOT MODIFY this field, unless explicitly documented the use
- uint32_t refCount = 0;
- uint32_t weakCount = 0; // TODO implement
-};
-
-template <typename T, typename TDeleter = DefaultDeleter<T>>
-class RcPtr : TDeleter {
-private:
- static_assert(std::is_base_of_v<RefCounted, T>);
- T* mPtr;
-
-public:
- RcPtr()
- : mPtr{ nullptr } {
- }
-
- explicit RcPtr(T* ptr)
- : mPtr{ ptr } {
- if (ptr) {
- ++ptr->RefCounted::refCount;
- }
- }
-
- ~RcPtr() {
- CleanUp();
- }
-
- void Attach(T* ptr) {
- CleanUp();
- mPtr = ptr;
- if (ptr) {
- ++ptr->RefCounted::refCount;
- }
- }
-
- void Detatch() {
- CleanUp();
- mPtr = nullptr;
- }
-
- RcPtr(const RcPtr& that)
- : mPtr{ that.mPtr } {
- if (mPtr) {
- ++mPtr->RefCounted::refCount;
- }
- }
-
- RcPtr& operator=(const RcPtr& that) {
- CleanUp();
- mPtr = that.mPtr;
- if (mPtr) {
- ++mPtr->RefCounted::refCount;
- }
- return *this;
- }
-
- RcPtr(RcPtr&& that)
- : mPtr{ that.mPtr } {
- that.mPtr = nullptr;
- }
-
- RcPtr& operator=(RcPtr&& that) {
- CleanUp();
- mPtr = that.mPtr;
- that.mPtr = nullptr;
- return *this;
- }
-
- template <typename TBase>
- requires std::is_base_of_v<TBase, T>
- operator RcPtr<TBase>() const {
- return RcPtr<TBase>(mPtr);
- }
-
- bool operator==(std::nullptr_t ptr) const {
- return mPtr == nullptr;
- }
-
- bool operator==(const T* ptr) const {
- return mPtr == ptr;
- }
-
- bool operator==(T* ptr) const {
- return mPtr == ptr;
- }
-
- template <typename TThat>
- bool operator==(const RcPtr<TThat>& ptr) const {
- return mPtr == ptr.Get();
- }
-
- T* Get() const {
- return mPtr;
- }
-
- T& operator*() const { return *mPtr; }
- T* operator->() const { return mPtr; }
-
-private:
- void CleanUp() {
- if (mPtr) {
- --mPtr->RefCounted::refCount;
- if (mPtr->RefCounted::refCount == 0) {
- TDeleter::operator()(mPtr);
- }
- }
- }
-};
diff --git a/source/10-common/Rect.hpp b/source/10-common/Rect.hpp
deleted file mode 100644
index 86a1268..0000000
--- a/source/10-common/Rect.hpp
+++ /dev/null
@@ -1,164 +0,0 @@
-#pragma once
-
-#include <glm/glm.hpp>
-
-/// Rect is a rectangle representation based on a point and a dimensions, in television coordinate space
-/// (x increases from left to right, y increases from top to bottom).
-template <typename T>
-class Rect {
-public:
- using ScalarType = T;
- using VectorType = glm::vec<2, T>;
-
-public:
- T x;
- T y;
- T width;
- T height;
-
-public:
- Rect()
- : x{ 0 }, y{ 0 }, width{ 0 }, height{ 0 } {
- }
-
- Rect(T x, T y, T width, T height)
- : x{ x }, y{ y }, width{ width }, height{ height } {
- }
-
- Rect(VectorType pos, VectorType size)
- : x{ pos.x }
- , y{ pos.y }
- , width{ size.x }
- , height{ size.y } {
- }
-
- T x0() const { return x; }
- T y0() const { return y; }
- T x1() const { return x + width; }
- T y1() const { return y + height; }
-
- VectorType TopLeft() const {
- return VectorType{ x, y };
- }
-
- VectorType TopRight() const {
- return VectorType{ x + width, y };
- }
-
- VectorType BottomLeft() const {
- return VectorType{ x, y + height };
- }
-
- VectorType BottomRight() const {
- return VectorType{ x + width, y + height };
- }
-
- VectorType Center() const {
- return TopLeft() + VectorType{ width / 2, height / 2 };
- }
-
- VectorType Dimensions() const {
- return VectorType{ width, height };
- }
-
- VectorType Extents() const {
- return VectorType{ width / 2, height / 2 };
- }
-
- /// Assumes `bySize * 2` is smaller than both `width` and `height` (does not produce a negative-dimension rectangle).
- Rect Shrink(T bySize) const {
- T two = bySize * 2;
- return Rect{ x + bySize, y + bySize, width - two, height - two };
- }
-
- Rect Shrink(T left, T top, T right, T bottom) const {
- return Rect{
- x + left,
- y + top,
- width - left - right,
- height - top - bottom,
- };
- }
-
- Rect Expand(T bySize) const {
- T two = bySize * 2;
- return Rect{ x - bySize, y - bySize, width + two, height + two };
- }
-
- Rect Expand(T left, T top, T right, T bottom) const {
- return Rect{
- x - left,
- y - top,
- width + left + right,
- height + top + bottom,
- };
- }
-
- bool Contains(VectorType point) const {
- return point.x >= x &&
- point.y >= y &&
- point.x < x + width &&
- point.y < y + height;
- }
-
- bool Intersects(const Rect& that) const {
- bool xBetween = x > that.x0() && x < that.x1();
- bool yBetween = y > that.y0() && y < that.y1();
- return xBetween && yBetween;
- }
-
- // Write min()/max() tenary by hand so that we don't have to include <algorithm>
- // This file is practically going to be included in every file in this project
-
- static Rect Intersection(const Rect& a, const Rect& b) {
- auto x0 = a.x0() > b.x0() ? a.x0() : b.x0(); // Max
- auto y0 = a.y0() > b.y0() ? a.y0() : b.y0(); // Max
- auto x1 = a.x1() < b.x1() ? a.x1() : b.x1(); // Min
- auto y1 = a.y1() < b.y1() ? a.y1() : b.y1(); // Min
- auto width = x1 - x0;
- auto height = y1 - x0;
- return Rect{ x0, y0, width, height };
- }
-
- static Rect Union(const Rect& a, const Rect& b) {
- auto x0 = a.x0() < b.x0() ? a.x0() : b.x0(); // Min
- auto y0 = a.y0() < b.y0() ? a.y0() : b.y0(); // Min
- auto x1 = a.x1() > b.x1() ? a.x1() : b.x1(); // Max
- auto y1 = a.y1() > b.y1() ? a.y1() : b.y1(); // Max
- auto width = x1 - x0;
- auto height = y1 - x0;
- return Rect{ x0, y0, width, height };
- }
-
- friend bool operator==(const Rect<T>&, const Rect<T>&) = default;
-
- Rect operator+(glm::vec<2, T> offset) const {
- return { x + offset.x, y + offset.y, width, height };
- }
-
- Rect operator-(glm::vec<2, T> offset) const {
- return { x - offset.x, y - offset.y, width, height };
- }
-
- Rect& operator+=(glm::vec<2, T> offset) {
- x += offset.x;
- y += offset.y;
- return *this;
- }
-
- Rect& operator-=(glm::vec<2, T> offset) {
- x -= offset.x;
- y -= offset.y;
- return *this;
- }
-
- template <typename TTarget>
- Rect<TTarget> Cast() const {
- return {
- static_cast<TTarget>(x),
- static_cast<TTarget>(y),
- static_cast<TTarget>(width),
- static_cast<TTarget>(height),
- };
- }
-};
diff --git a/source/10-common/RingBuffer.hpp b/source/10-common/RingBuffer.hpp
deleted file mode 100644
index 4eaa007..0000000
--- a/source/10-common/RingBuffer.hpp
+++ /dev/null
@@ -1,191 +0,0 @@
-#pragma once
-
-#include <algorithm>
-#include <cassert>
-#include <cstddef>
-#include <iterator>
-
-class RingBufferSentinel {};
-
-template <typename TContainer>
-class RingBufferIterator {
-public:
- using difference_type = TContainer::difference_type;
- using value_type = TContainer::value_type; // C++20 relaxed usage requirements of `typename`, now locations where a type is required (like here in a using statement) it's no longer mandatory
- using pointer = value_type*;
- using reference = value_type&;
- using iterator_category = std::random_access_iterator_tag;
-
-public:
- TContainer* container;
- TContainer::size_type curr; // C++20 relaxed usage requirements of `typename`, same here
- bool needsWrapAround;
- bool hasWrappedAround = false;
-
-public:
- reference operator*() const {
- return container->mRing[curr];
- }
-
- RingBufferIterator& operator++() {
- assert(*this != RingBufferSentinel{});
- ++curr;
- if (needsWrapAround && curr == container->mCapacity) {
- hasWrappedAround = true;
- curr = 0;
- }
- return *this;
- }
-
- bool operator==(const RingBufferIterator& that) const {
- assert(this->container == that.container);
- return this->curr == that.curr;
- }
-
- bool operator==(const RingBufferSentinel&) const {
- return curr == container->mTailIdx && (!needsWrapAround || hasWrappedAround);
- }
-};
-
-template <typename T>
-class RingBuffer {
-public:
- using value_type = T;
- using reference = T&;
- using const_reference = const T&;
- friend class RingBufferIterator<RingBuffer>;
- using iterator = RingBufferIterator<RingBuffer>;
- friend class RingBufferIterator<const RingBuffer>;
- using const_iterator = RingBufferIterator<const RingBuffer>;
- using sentinel = RingBufferSentinel; // Not a part of C++'s Container named requirements, added here for convenience
- using difference_type = ptrdiff_t;
- using size_type = size_t;
-
-private:
- T* mRing = nullptr;
- size_type mHeadIdx = 0;
- size_type mTailIdx = 0;
- size_type mCapacity = 0;
- size_type mSize = 0;
-
-public:
- RingBuffer() noexcept = default;
-
- ~RingBuffer() noexcept {
- delete[] mRing;
- }
-
- RingBuffer(const RingBuffer&) noexcept = delete;
- RingBuffer& operator=(const RingBuffer&) noexcept = delete;
-
- RingBuffer(RingBuffer&& that) noexcept
- : mRing{ that.mRing }
- , mHeadIdx{ that.mHeadIdx }
- , mTailIdx{ that.mTailIdx }
- , mCapacity{ that.mCapacity }
- , mSize{ that.mSize } {
- that.mRing = nullptr;
- }
-
- RingBuffer& operator=(RingBuffer&& that) noexcept {
- if (this != &that) {
- auto oldThisRing = this->mRing;
- this->mRing = that.mRing;
- that.mRing = nullptr;
- delete oldThisRing;
-
- this->mHeadIdx = that.mHeadIdx;
- this->mTailIdx = that.mTailIdx;
- this->mCapacity = that.mCapacity;
- this->mSize = that.mSize;
- }
-
- return *this;
- }
-
- [[nodiscard]] iterator begin() {
- return {
- .container = this,
- .curr = mHeadIdx,
- .needsWrapAround = mHeadIdx >= mTailIdx,
- };
- }
-
- [[nodiscard]] const_iterator begin() const { return cbegin(); }
-
- // Same type for both const this and non-const `this`
- [[nodiscard]] sentinel end() const { return sentinel{}; }
-
- [[nodiscard]] const_iterator cbegin() const {
- return {
- .container = this,
- .curr = mHeadIdx,
- .needsWrapAround = mHeadIdx >= mTailIdx,
- };
- }
-
- [[nodiscard]] sentinel cend() const { return sentinel{}; }
-
- [[nodiscard]] T& operator[](size_type i) { return const_cast<T&>(const_cast<const RingBuffer&>(*this)[i]); }
- [[nodiscard]] const T& operator[](size_type i) const {
- assert(mRing != nullptr);
- size_type idx = mHeadIdx + i;
- if (idx >= mCapacity) {
- idx -= mCapacity;
- }
- return mRing[idx];
- }
-
- void push_back(T t) {
- assert(mRing != nullptr);
- if (mTailIdx == mCapacity) {
- // Ring buffer is filled to the right, warp around to the beginning
- // mHeadIdx > 0 must be true, since we checked that as condition (1) above
- mRing[0] = std::move(t);
- mTailIdx = 1;
- } else {
- mRing[mTailIdx] = std::move(t);
- mTailIdx += 1;
- }
-
- // Push mHeadIdx backwards if overwrote element in a filled buffer
- bool bufferFilled = mSize == mCapacity;
- if (bufferFilled && mTailIdx > mHeadIdx) {
- mHeadIdx += 1;
- if (mHeadIdx == mCapacity) {
- mHeadIdx = 0;
- }
- }
-
- if (!bufferFilled) {
- ++mSize;
- }
- }
-
- [[nodiscard]] size_type capacity() const {
- return mCapacity;
- }
-
- [[nodiscard]] size_type size() const {
- return mSize;
- }
-
- [[nodiscard]] T* GetBuffer() const { return mRing; }
- [[nodiscard]] size_type GetHeadIdx() const { return mHeadIdx; }
- [[nodiscard]] size_type GetTailIdx() const { return mTailIdx; }
-
- void resize(size_type newCapacity) {
- auto size = this->size();
-
- auto oldRing = mRing;
- auto newRing = mRing = new T[newCapacity];
- if (oldRing != nullptr) {
- std::rotate_copy(oldRing, oldRing + mHeadIdx, oldRing + mCapacity, newRing);
- delete[] oldRing;
- }
-
- mCapacity = newCapacity;
- mHeadIdx = 0;
- mTailIdx = size;
- }
-};
diff --git a/source/10-common/ScopeGuard.hpp b/source/10-common/ScopeGuard.hpp
deleted file mode 100644
index 4e1a348..0000000
--- a/source/10-common/ScopeGuard.hpp
+++ /dev/null
@@ -1,60 +0,0 @@
-#pragma once
-
-#include "Macros.hpp"
-
-#include <utility>
-
-template <typename TCleanupFunc>
-class ScopeGuard {
-private:
- TCleanupFunc mFunc;
- bool mDismissed = false;
-
-public:
- /// Specifically left this implicit so that constructs like
- /// \code
- /// ScopeGuard sg = [&]() { res.Cleanup(); };
- /// \endcode
- /// would work. It is highly discourage and unlikely that one would want to use ScopeGuard as a function
- /// parameter, so the normal argument that implicit conversion are harmful doesn't really apply here.
- // Deliberately not explicit to allow usages like: ScopeGuard var = lambda;
- ScopeGuard(TCleanupFunc&& function) noexcept
- : mFunc{ std::move(function) } {
- }
-
- ~ScopeGuard() noexcept {
- if (!mDismissed) {
- mFunc();
- }
- }
-
- ScopeGuard(const ScopeGuard&) = delete;
- ScopeGuard& operator=(const ScopeGuard&) = delete;
-
- ScopeGuard(ScopeGuard&& that) noexcept
- : mFunc{ std::move(that.mFunc) } {
- that.Cancel();
- }
-
- ScopeGuard& operator=(ScopeGuard&& that) noexcept {
- if (!mDismissed) {
- mFunc();
- }
- this->mFunc = std::move(that.mFunc);
- this->cancelled = std::exchange(that.cancelled, true);
- }
-
- void Dismiss() noexcept {
- mDismissed = true;
- }
-};
-
-template <typename T>
-auto GuardDeletion(T* ptr) {
- return ScopeGuard([ptr]() {
- delete ptr;
- });
-}
-
-#define SCOPE_GUARD(name) ScopeGuard name = [&]()
-#define DEFER ScopeGuard UNIQUE_NAME(scopeGuard) = [&]()
diff --git a/source/10-common/SmallVector.cpp b/source/10-common/SmallVector.cpp
deleted file mode 100644
index 65953f0..0000000
--- a/source/10-common/SmallVector.cpp
+++ /dev/null
@@ -1,145 +0,0 @@
-// Obtained from https://github.com/llvm/llvm-project/blob/main/llvm/lib/Support/SmallVector.cpp
-// commit 4b82bb6d82f65f98f23d0e4c2cd5297dc162864c
-// adapted in code style and utilities to fix this project
-
-//===- llvm/ADT/SmallVector.cpp - 'Normally small' vectors ----------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the SmallVector class.
-//
-//===----------------------------------------------------------------------===//
-
-#include "SmallVector.hpp"
-
-#include <cstdlib>
-#include <stdexcept>
-#include <string>
-
-// Check that no bytes are wasted and everything is well-aligned.
-namespace {
-// These structures may cause binary compat warnings on AIX. Suppress the
-// warning since we are only using these types for the static assertions below.
-#if defined(_AIX)
-# pragma GCC diagnostic push
-# pragma GCC diagnostic ignored "-Waix-compat"
-#endif
-struct Struct16B {
- alignas(16) void* X;
-};
-struct Struct32B {
- alignas(32) void* X;
-};
-#if defined(_AIX)
-# pragma GCC diagnostic pop
-#endif
-} // namespace
-static_assert(sizeof(SmallVector<void*, 0>) ==
- sizeof(unsigned) * 2 + sizeof(void*),
- "wasted space in SmallVector size 0");
-static_assert(alignof(SmallVector<Struct16B, 0>) >= alignof(Struct16B),
- "wrong alignment for 16-byte aligned T");
-static_assert(alignof(SmallVector<Struct32B, 0>) >= alignof(Struct32B),
- "wrong alignment for 32-byte aligned T");
-static_assert(sizeof(SmallVector<Struct16B, 0>) >= alignof(Struct16B),
- "missing padding for 16-byte aligned T");
-static_assert(sizeof(SmallVector<Struct32B, 0>) >= alignof(Struct32B),
- "missing padding for 32-byte aligned T");
-static_assert(sizeof(SmallVector<void*, 1>) ==
- sizeof(unsigned) * 2 + sizeof(void*) * 2,
- "wasted space in SmallVector size 1");
-
-static_assert(sizeof(SmallVector<char, 0>) ==
- sizeof(void*) * 2 + sizeof(void*),
- "1 byte elements have word-sized type for size and capacity");
-
-/// Report that MinSize doesn't fit into this vector's size type. Throws
-/// std::length_error or calls report_fatal_error.
-[[noreturn]] static void report_size_overflow(size_t MinSize, size_t MaxSize);
-static void report_size_overflow(size_t MinSize, size_t MaxSize) {
- std::string Reason = "SmallVector unable to grow. Requested capacity (" +
- std::to_string(MinSize) +
- ") is larger than maximum value for size type (" +
- std::to_string(MaxSize) + ")";
- throw std::length_error(Reason);
-}
-
-/// Report that this vector is already at maximum capacity. Throws
-/// std::length_error or calls report_fatal_error.
-[[noreturn]] static void report_at_maximum_capacity(size_t MaxSize);
-static void report_at_maximum_capacity(size_t MaxSize) {
- std::string Reason =
- "SmallVector capacity unable to grow. Already at maximum size " +
- std::to_string(MaxSize);
- throw std::length_error(Reason);
-}
-
-// Note: Moving this function into the header may cause performance regression.
-template <typename Size_T>
-static size_t getNewCapacity(size_t MinSize, size_t TSize, size_t OldCapacity) {
- constexpr size_t MaxSize = std::numeric_limits<Size_T>::max();
-
- // Ensure we can fit the new capacity.
- // This is only going to be applicable when the capacity is 32 bit.
- if (MinSize > MaxSize)
- report_size_overflow(MinSize, MaxSize);
-
- // Ensure we can meet the guarantee of space for at least one more element.
- // The above check alone will not catch the case where grow is called with a
- // default MinSize of 0, but the current capacity cannot be increased.
- // This is only going to be applicable when the capacity is 32 bit.
- if (OldCapacity == MaxSize)
- report_at_maximum_capacity(MaxSize);
-
- // In theory 2*capacity can overflow if the capacity is 64 bit, but the
- // original capacity would never be large enough for this to be a problem.
- size_t NewCapacity = 2 * OldCapacity + 1; // Always grow.
- return std::min(std::max(NewCapacity, MinSize), MaxSize);
-}
-
-// Note: Moving this function into the header may cause performance regression.
-template <typename Size_T>
-void* SmallVectorBase<Size_T>::mallocForGrow(size_t MinSize, size_t TSize, size_t& NewCapacity) {
- NewCapacity = getNewCapacity<Size_T>(MinSize, TSize, this->capacity());
- return malloc(NewCapacity * TSize);
-}
-
-// Note: Moving this function into the header may cause performance regression.
-template <typename Size_T>
-void SmallVectorBase<Size_T>::grow_pod(void* FirstEl, size_t MinSize, size_t TSize) {
- size_t NewCapacity = getNewCapacity<Size_T>(MinSize, TSize, this->capacity());
- void* NewElts;
- if (BeginX == FirstEl) {
- NewElts = malloc(NewCapacity * TSize);
-
- // Copy the elements over. No need to run dtors on PODs.
- memcpy(NewElts, this->BeginX, size() * TSize);
- } else {
- // If this wasn't grown from the inline copy, grow the allocated space.
- NewElts = realloc(this->BeginX, NewCapacity * TSize);
- }
-
- this->BeginX = NewElts;
- this->Capacity = NewCapacity;
-}
-
-template class SmallVectorBase<uint32_t>;
-
-// Disable the uint64_t instantiation for 32-bit builds.
-// Both uint32_t and uint64_t instantiations are needed for 64-bit builds.
-// This instantiation will never be used in 32-bit builds, and will cause
-// warnings when sizeof(Size_T) > sizeof(size_t).
-#if SIZE_MAX > UINT32_MAX
-template class SmallVectorBase<uint64_t>;
-
-// Assertions to ensure this #if stays in sync with SmallVectorSizeType.
-static_assert(sizeof(SmallVectorSizeType<char>) == sizeof(uint64_t),
- "Expected SmallVectorBase<uint64_t> variant to be in use.");
-#else
-static_assert(sizeof(SmallVectorSizeType<char>) == sizeof(uint32_t),
- "Expected SmallVectorBase<uint32_t> variant to be in use.");
-#endif
diff --git a/source/10-common/SmallVector.hpp b/source/10-common/SmallVector.hpp
deleted file mode 100644
index 3fc7519..0000000
--- a/source/10-common/SmallVector.hpp
+++ /dev/null
@@ -1,1332 +0,0 @@
-// Obtained from https://github.com/llvm/llvm-project/blob/main/llvm/include/llvm/ADT/SmallVector.h
-// commit 4b82bb6d82f65f98f23d0e4c2cd5297dc162864c
-// adapted in code style and utilities to fix this project
-
-//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-///
-/// \file
-/// This file defines the SmallVector class.
-///
-//===----------------------------------------------------------------------===//
-
-#pragma once
-
-#include <algorithm>
-#include <cassert>
-#include <cstddef>
-#include <cstdlib>
-#include <cstring>
-#include <functional>
-#include <initializer_list>
-#include <iterator>
-#include <limits>
-#include <memory>
-#include <new>
-#include <type_traits>
-#include <utility>
-
-#ifdef _MSC_VER
-# pragma warning(push)
-# pragma warning(disable : 4267) // The compiler detected a conversion from size_t to a smaller type.
-#endif
-
-#if __has_builtin(__builtin_expect) || defined(__GNUC__)
-# define LLVM_LIKELY(EXPR) __builtin_expect((bool)(EXPR), true)
-# define LLVM_UNLIKELY(EXPR) __builtin_expect((bool)(EXPR), false)
-#else
-# define LLVM_LIKELY(EXPR) (EXPR)
-# define LLVM_UNLIKELY(EXPR) (EXPR)
-#endif
-
-template <typename IteratorT>
-class iterator_range;
-
-/// This is all the stuff common to all SmallVectors.
-///
-/// The template parameter specifies the type which should be used to hold the
-/// Size and Capacity of the SmallVector, so it can be adjusted.
-/// Using 32 bit size is desirable to shrink the size of the SmallVector.
-/// Using 64 bit size is desirable for cases like SmallVector<char>, where a
-/// 32 bit size would limit the vector to ~4GB. SmallVectors are used for
-/// buffering bitcode output - which can exceed 4GB.
-template <typename Size_T>
-class SmallVectorBase {
-protected:
- void* BeginX;
- Size_T Size = 0, Capacity;
-
- /// The maximum value of the Size_T used.
- static constexpr size_t SizeTypeMax() {
- return std::numeric_limits<Size_T>::max();
- }
-
- SmallVectorBase() = delete;
- SmallVectorBase(void* FirstEl, size_t TotalCapacity)
- : BeginX(FirstEl), Capacity(TotalCapacity) {}
-
- /// This is a helper for \a grow() that's out of line to reduce code
- /// duplication. This function will report a fatal error if it can't grow at
- /// least to \p MinSize.
- void* mallocForGrow(size_t MinSize, size_t TSize, size_t& NewCapacity);
-
- /// This is an implementation of the grow() method which only works
- /// on POD-like data types and is out of line to reduce code duplication.
- /// This function will report a fatal error if it cannot increase capacity.
- void grow_pod(void* FirstEl, size_t MinSize, size_t TSize);
-
-public:
- size_t size() const { return Size; }
- size_t capacity() const { return Capacity; }
-
- [[nodiscard]] bool empty() const { return !Size; }
-
-protected:
- /// Set the array size to \p N, which the current array must have enough
- /// capacity for.
- ///
- /// This does not construct or destroy any elements in the vector.
- void set_size(size_t N) {
- assert(N <= capacity());
- Size = N;
- }
-};
-
-template <typename T>
-using SmallVectorSizeType =
- typename std::conditional<sizeof(T) < 4 && sizeof(void*) >= 8, uint64_t, uint32_t>::type;
-
-/// Figure out the offset of the first element.
-template <typename T, typename = void>
-struct SmallVectorAlignmentAndSize {
- alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof(
- SmallVectorBase<SmallVectorSizeType<T>>)];
- alignas(T) char FirstEl[sizeof(T)];
-};
-
-/// This is the part of SmallVectorTemplateBase which does not depend on whether
-/// the type T is a POD. The extra dummy template argument is used by ArrayRef
-/// to avoid unnecessarily requiring T to be complete.
-template <typename T, typename = void>
-class SmallVectorTemplateCommon
- : public SmallVectorBase<SmallVectorSizeType<T>> {
- using Base = SmallVectorBase<SmallVectorSizeType<T>>;
-
- /// Find the address of the first element. For this pointer math to be valid
- /// with small-size of 0 for T with lots of alignment, it's important that
- /// SmallVectorStorage is properly-aligned even for small-size of 0.
- void* getFirstEl() const {
- return const_cast<void*>(reinterpret_cast<const void*>(
- reinterpret_cast<const char*>(this) +
- offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)));
- }
- // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
-
-protected:
- SmallVectorTemplateCommon(size_t Size)
- : Base(getFirstEl(), Size) {}
-
- void grow_pod(size_t MinSize, size_t TSize) {
- Base::grow_pod(getFirstEl(), MinSize, TSize);
- }
-
- /// Return true if this is a smallvector which has not had dynamic
- /// memory allocated for it.
- bool isSmall() const { return this->BeginX == getFirstEl(); }
-
- /// Put this vector in a state of being small.
- void resetToSmall() {
- this->BeginX = getFirstEl();
- this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
- }
-
- /// Return true if V is an internal reference to the given range.
- bool isReferenceToRange(const void* V, const void* First, const void* Last) const {
- // Use std::less to avoid UB.
- std::less<> LessThan;
- return !LessThan(V, First) && LessThan(V, Last);
- }
-
- /// Return true if V is an internal reference to this vector.
- bool isReferenceToStorage(const void* V) const {
- return isReferenceToRange(V, this->begin(), this->end());
- }
-
- /// Return true if First and Last form a valid (possibly empty) range in this
- /// vector's storage.
- bool isRangeInStorage(const void* First, const void* Last) const {
- // Use std::less to avoid UB.
- std::less<> LessThan;
- return !LessThan(First, this->begin()) && !LessThan(Last, First) &&
- !LessThan(this->end(), Last);
- }
-
- /// Return true unless Elt will be invalidated by resizing the vector to
- /// NewSize.
- bool isSafeToReferenceAfterResize(const void* Elt, size_t NewSize) {
- // Past the end.
- if (LLVM_LIKELY(!isReferenceToStorage(Elt)))
- return true;
-
- // Return false if Elt will be destroyed by shrinking.
- if (NewSize <= this->size())
- return Elt < this->begin() + NewSize;
-
- // Return false if we need to grow.
- return NewSize <= this->capacity();
- }
-
- /// Check whether Elt will be invalidated by resizing the vector to NewSize.
- void assertSafeToReferenceAfterResize(const void* Elt, size_t NewSize) {
- assert(isSafeToReferenceAfterResize(Elt, NewSize) &&
- "Attempting to reference an element of the vector in an operation "
- "that invalidates it");
- }
-
- /// Check whether Elt will be invalidated by increasing the size of the
- /// vector by N.
- void assertSafeToAdd(const void* Elt, size_t N = 1) {
- this->assertSafeToReferenceAfterResize(Elt, this->size() + N);
- }
-
- /// Check whether any part of the range will be invalidated by clearing.
- void assertSafeToReferenceAfterClear(const T* From, const T* To) {
- if (From == To)
- return;
- this->assertSafeToReferenceAfterResize(From, 0);
- this->assertSafeToReferenceAfterResize(To - 1, 0);
- }
- template <
- class ItTy,
- std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T*>::value,
- bool> = false>
- void assertSafeToReferenceAfterClear(ItTy, ItTy) {}
-
- /// Check whether any part of the range will be invalidated by growing.
- void assertSafeToAddRange(const T* From, const T* To) {
- if (From == To)
- return;
- this->assertSafeToAdd(From, To - From);
- this->assertSafeToAdd(To - 1, To - From);
- }
- template <
- class ItTy,
- std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T*>::value,
- bool> = false>
- void assertSafeToAddRange(ItTy, ItTy) {}
-
- /// Reserve enough space to add one element, and return the updated element
- /// pointer in case it was a reference to the storage.
- template <typename U>
- static const T* reserveForParamAndGetAddressImpl(U* This, const T& Elt, size_t N) {
- size_t NewSize = This->size() + N;
- if (LLVM_LIKELY(NewSize <= This->capacity()))
- return &Elt;
-
- bool ReferencesStorage = false;
- int64_t Index = -1;
- if (!U::TakesParamByValue) {
- if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))) {
- ReferencesStorage = true;
- Index = &Elt - This->begin();
- }
- }
- This->grow(NewSize);
- return ReferencesStorage ? This->begin() + Index : &Elt;
- }
-
-public:
- using size_type = size_t;
- using difference_type = ptrdiff_t;
- using value_type = T;
- using iterator = T*;
- using const_iterator = const T*;
-
- using const_reverse_iterator = std::reverse_iterator<const_iterator>;
- using reverse_iterator = std::reverse_iterator<iterator>;
-
- using reference = T&;
- using const_reference = const T&;
- using pointer = T*;
- using const_pointer = const T*;
-
- using Base::capacity;
- using Base::empty;
- using Base::size;
-
- // forward iterator creation methods.
- iterator begin() { return (iterator)this->BeginX; }
- const_iterator begin() const { return (const_iterator)this->BeginX; }
- iterator end() { return begin() + size(); }
- const_iterator end() const { return begin() + size(); }
-
- // reverse iterator creation methods.
- reverse_iterator rbegin() { return reverse_iterator(end()); }
- const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
- reverse_iterator rend() { return reverse_iterator(begin()); }
- const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
-
- size_type size_in_bytes() const { return size() * sizeof(T); }
- size_type max_size() const {
- return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T));
- }
-
- size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
-
- /// Return a pointer to the vector's buffer, even if empty().
- pointer data() { return pointer(begin()); }
- /// Return a pointer to the vector's buffer, even if empty().
- const_pointer data() const { return const_pointer(begin()); }
-
- reference operator[](size_type idx) {
- assert(idx < size());
- return begin()[idx];
- }
- const_reference operator[](size_type idx) const {
- assert(idx < size());
- return begin()[idx];
- }
-
- reference front() {
- assert(!empty());
- return begin()[0];
- }
- const_reference front() const {
- assert(!empty());
- return begin()[0];
- }
-
- reference back() {
- assert(!empty());
- return end()[-1];
- }
- const_reference back() const {
- assert(!empty());
- return end()[-1];
- }
-};
-
-/// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put
-/// method implementations that are designed to work with non-trivial T's.
-///
-/// We approximate is_trivially_copyable with trivial move/copy construction and
-/// trivial destruction. While the standard doesn't specify that you're allowed
-/// copy these types with memcpy, there is no way for the type to observe this.
-/// This catches the important case of std::pair<POD, POD>, which is not
-/// trivially assignable.
-template <typename T, bool = (std::is_trivially_copy_constructible<T>::value) && (std::is_trivially_move_constructible<T>::value) && std::is_trivially_destructible<T>::value>
-class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
- friend class SmallVectorTemplateCommon<T>;
-
-protected:
- static constexpr bool TakesParamByValue = false;
- using ValueParamT = const T&;
-
- SmallVectorTemplateBase(size_t Size)
- : SmallVectorTemplateCommon<T>(Size) {}
-
- static void destroy_range(T* S, T* E) {
- while (S != E) {
- --E;
- E->~T();
- }
- }
-
- /// Move the range [I, E) into the uninitialized memory starting with "Dest",
- /// constructing elements as needed.
- template <typename It1, typename It2>
- static void uninitialized_move(It1 I, It1 E, It2 Dest) {
- std::uninitialized_copy(std::make_move_iterator(I),
- std::make_move_iterator(E),
- Dest);
- }
-
- /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
- /// constructing elements as needed.
- template <typename It1, typename It2>
- static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
- std::uninitialized_copy(I, E, Dest);
- }
-
- /// Grow the allocated memory (without initializing new elements), doubling
- /// the size of the allocated memory. Guarantees space for at least one more
- /// element, or MinSize more elements if specified.
- void grow(size_t MinSize = 0);
-
- /// Create a new allocation big enough for \p MinSize and pass back its size
- /// in \p NewCapacity. This is the first section of \a grow().
- T* mallocForGrow(size_t MinSize, size_t& NewCapacity) {
- return static_cast<T*>(
- SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow(
- MinSize, sizeof(T), NewCapacity));
- }
-
- /// Move existing elements over to the new allocation \p NewElts, the middle
- /// section of \a grow().
- void moveElementsForGrow(T* NewElts);
-
- /// Transfer ownership of the allocation, finishing up \a grow().
- void takeAllocationForGrow(T* NewElts, size_t NewCapacity);
-
- /// Reserve enough space to add one element, and return the updated element
- /// pointer in case it was a reference to the storage.
- const T* reserveForParamAndGetAddress(const T& Elt, size_t N = 1) {
- return this->reserveForParamAndGetAddressImpl(this, Elt, N);
- }
-
- /// Reserve enough space to add one element, and return the updated element
- /// pointer in case it was a reference to the storage.
- T* reserveForParamAndGetAddress(T& Elt, size_t N = 1) {
- return const_cast<T*>(
- this->reserveForParamAndGetAddressImpl(this, Elt, N));
- }
-
- static T&& forward_value_param(T&& V) { return std::move(V); }
- static const T& forward_value_param(const T& V) { return V; }
-
- void growAndAssign(size_t NumElts, const T& Elt) {
- // Grow manually in case Elt is an internal reference.
- size_t NewCapacity;
- T* NewElts = mallocForGrow(NumElts, NewCapacity);
- std::uninitialized_fill_n(NewElts, NumElts, Elt);
- this->destroy_range(this->begin(), this->end());
- takeAllocationForGrow(NewElts, NewCapacity);
- this->set_size(NumElts);
- }
-
- template <typename... ArgTypes>
- T& growAndEmplaceBack(ArgTypes&&... Args) {
- // Grow manually in case one of Args is an internal reference.
- size_t NewCapacity;
- T* NewElts = mallocForGrow(0, NewCapacity);
- ::new ((void*)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...);
- moveElementsForGrow(NewElts);
- takeAllocationForGrow(NewElts, NewCapacity);
- this->set_size(this->size() + 1);
- return this->back();
- }
-
-public:
- void push_back(const T& Elt) {
- const T* EltPtr = reserveForParamAndGetAddress(Elt);
- ::new ((void*)this->end()) T(*EltPtr);
- this->set_size(this->size() + 1);
- }
-
- void push_back(T&& Elt) {
- T* EltPtr = reserveForParamAndGetAddress(Elt);
- ::new ((void*)this->end()) T(::std::move(*EltPtr));
- this->set_size(this->size() + 1);
- }
-
- void pop_back() {
- this->set_size(this->size() - 1);
- this->end()->~T();
- }
-};
-
-// Define this out-of-line to dissuade the C++ compiler from inlining it.
-template <typename T, bool TriviallyCopyable>
-void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
- size_t NewCapacity;
- T* NewElts = mallocForGrow(MinSize, NewCapacity);
- moveElementsForGrow(NewElts);
- takeAllocationForGrow(NewElts, NewCapacity);
-}
-
-// Define this out-of-line to dissuade the C++ compiler from inlining it.
-template <typename T, bool TriviallyCopyable>
-void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow(
- T* NewElts) {
- // Move the elements over.
- this->uninitialized_move(this->begin(), this->end(), NewElts);
-
- // Destroy the original elements.
- destroy_range(this->begin(), this->end());
-}
-
-// Define this out-of-line to dissuade the C++ compiler from inlining it.
-template <typename T, bool TriviallyCopyable>
-void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow(
- T* NewElts, size_t NewCapacity) {
- // If this wasn't grown from the inline copy, deallocate the old space.
- if (!this->isSmall())
- free(this->begin());
-
- this->BeginX = NewElts;
- this->Capacity = NewCapacity;
-}
-
-/// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
-/// method implementations that are designed to work with trivially copyable
-/// T's. This allows using memcpy in place of copy/move construction and
-/// skipping destruction.
-template <typename T>
-class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
- friend class SmallVectorTemplateCommon<T>;
-
-protected:
- /// True if it's cheap enough to take parameters by value. Doing so avoids
- /// overhead related to mitigations for reference invalidation.
- static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void*);
-
- /// Either const T& or T, depending on whether it's cheap enough to take
- /// parameters by value.
- using ValueParamT =
- typename std::conditional<TakesParamByValue, T, const T&>::type;
-
- SmallVectorTemplateBase(size_t Size)
- : SmallVectorTemplateCommon<T>(Size) {}
-
- // No need to do a destroy loop for POD's.
- static void destroy_range(T*, T*) {}
-
- /// Move the range [I, E) onto the uninitialized memory
- /// starting with "Dest", constructing elements into it as needed.
- template <typename It1, typename It2>
- static void uninitialized_move(It1 I, It1 E, It2 Dest) {
- // Just do a copy.
- uninitialized_copy(I, E, Dest);
- }
-
- /// Copy the range [I, E) onto the uninitialized memory
- /// starting with "Dest", constructing elements into it as needed.
- template <typename It1, typename It2>
- static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
- // Arbitrary iterator types; just use the basic implementation.
- std::uninitialized_copy(I, E, Dest);
- }
-
- /// Copy the range [I, E) onto the uninitialized memory
- /// starting with "Dest", constructing elements into it as needed.
- template <typename T1, typename T2>
- static void uninitialized_copy(
- T1* I, T1* E, T2* Dest, std::enable_if_t<std::is_same<typename std::remove_const<T1>::type, T2>::value>* = nullptr) {
- // Use memcpy for PODs iterated by pointers (which includes SmallVector
- // iterators): std::uninitialized_copy optimizes to memmove, but we can
- // use memcpy here. Note that I and E are iterators and thus might be
- // invalid for memcpy if they are equal.
- if (I != E)
- memcpy(reinterpret_cast<void*>(Dest), I, (E - I) * sizeof(T));
- }
-
- /// Double the size of the allocated memory, guaranteeing space for at
- /// least one more element or MinSize if specified.
- void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
-
- /// Reserve enough space to add one element, and return the updated element
- /// pointer in case it was a reference to the storage.
- const T* reserveForParamAndGetAddress(const T& Elt, size_t N = 1) {
- return this->reserveForParamAndGetAddressImpl(this, Elt, N);
- }
-
- /// Reserve enough space to add one element, and return the updated element
- /// pointer in case it was a reference to the storage.
- T* reserveForParamAndGetAddress(T& Elt, size_t N = 1) {
- return const_cast<T*>(
- this->reserveForParamAndGetAddressImpl(this, Elt, N));
- }
-
- /// Copy \p V or return a reference, depending on \a ValueParamT.
- static ValueParamT forward_value_param(ValueParamT V) { return V; }
-
- void growAndAssign(size_t NumElts, T Elt) {
- // Elt has been copied in case it's an internal reference, side-stepping
- // reference invalidation problems without losing the realloc optimization.
- this->set_size(0);
- this->grow(NumElts);
- std::uninitialized_fill_n(this->begin(), NumElts, Elt);
- this->set_size(NumElts);
- }
-
- template <typename... ArgTypes>
- T& growAndEmplaceBack(ArgTypes&&... Args) {
- // Use push_back with a copy in case Args has an internal reference,
- // side-stepping reference invalidation problems without losing the realloc
- // optimization.
- push_back(T(std::forward<ArgTypes>(Args)...));
- return this->back();
- }
-
-public:
- void push_back(ValueParamT Elt) {
- const T* EltPtr = reserveForParamAndGetAddress(Elt);
- memcpy(reinterpret_cast<void*>(this->end()), EltPtr, sizeof(T));
- this->set_size(this->size() + 1);
- }
-
- void pop_back() { this->set_size(this->size() - 1); }
-};
-
-/// This class consists of common code factored out of the SmallVector class to
-/// reduce code duplication based on the SmallVector 'N' template parameter.
-template <typename T>
-class SmallVectorImpl : public SmallVectorTemplateBase<T> {
- using SuperClass = SmallVectorTemplateBase<T>;
-
-public:
- using iterator = typename SuperClass::iterator;
- using const_iterator = typename SuperClass::const_iterator;
- using reference = typename SuperClass::reference;
- using size_type = typename SuperClass::size_type;
-
-protected:
- using SmallVectorTemplateBase<T>::TakesParamByValue;
- using ValueParamT = typename SuperClass::ValueParamT;
-
- // Default ctor - Initialize to empty.
- explicit SmallVectorImpl(unsigned N)
- : SmallVectorTemplateBase<T>(N) {}
-
- void assignRemote(SmallVectorImpl&& RHS) {
- this->destroy_range(this->begin(), this->end());
- if (!this->isSmall())
- free(this->begin());
- this->BeginX = RHS.BeginX;
- this->Size = RHS.Size;
- this->Capacity = RHS.Capacity;
- RHS.resetToSmall();
- }
-
-public:
- SmallVectorImpl(const SmallVectorImpl&) = delete;
-
- ~SmallVectorImpl() {
- // Subclass has already destructed this vector's elements.
- // If this wasn't grown from the inline copy, deallocate the old space.
- if (!this->isSmall())
- free(this->begin());
- }
-
- void clear() {
- this->destroy_range(this->begin(), this->end());
- this->Size = 0;
- }
-
-private:
- // Make set_size() private to avoid misuse in subclasses.
- using SuperClass::set_size;
-
- template <bool ForOverwrite>
- void resizeImpl(size_type N) {
- if (N == this->size())
- return;
-
- if (N < this->size()) {
- this->truncate(N);
- return;
- }
-
- this->reserve(N);
- for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
- if (ForOverwrite)
- new (&*I) T;
- else
- new (&*I) T();
- this->set_size(N);
- }
-
-public:
- void resize(size_type N) { resizeImpl<false>(N); }
-
- /// Like resize, but \ref T is POD, the new values won't be initialized.
- void resize_for_overwrite(size_type N) { resizeImpl<true>(N); }
-
- /// Like resize, but requires that \p N is less than \a size().
- void truncate(size_type N) {
- assert(this->size() >= N && "Cannot increase size with truncate");
- this->destroy_range(this->begin() + N, this->end());
- this->set_size(N);
- }
-
- void resize(size_type N, ValueParamT NV) {
- if (N == this->size())
- return;
-
- if (N < this->size()) {
- this->truncate(N);
- return;
- }
-
- // N > this->size(). Defer to append.
- this->append(N - this->size(), NV);
- }
-
- void reserve(size_type N) {
- if (this->capacity() < N)
- this->grow(N);
- }
-
- void pop_back_n(size_type NumItems) {
- assert(this->size() >= NumItems);
- truncate(this->size() - NumItems);
- }
-
- [[nodiscard]] T pop_back_val() {
- T Result = ::std::move(this->back());
- this->pop_back();
- return Result;
- }
-
- void swap(SmallVectorImpl& RHS);
-
- /// Add the specified range to the end of the SmallVector.
- template <typename in_iter,
- typename = std::enable_if_t<std::is_convertible<
- typename std::iterator_traits<in_iter>::iterator_category,
- std::input_iterator_tag>::value>>
- void append(in_iter in_start, in_iter in_end) {
- this->assertSafeToAddRange(in_start, in_end);
- size_type NumInputs = std::distance(in_start, in_end);
- this->reserve(this->size() + NumInputs);
- this->uninitialized_copy(in_start, in_end, this->end());
- this->set_size(this->size() + NumInputs);
- }
-
- /// Append \p NumInputs copies of \p Elt to the end.
- void append(size_type NumInputs, ValueParamT Elt) {
- const T* EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs);
- std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr);
- this->set_size(this->size() + NumInputs);
- }
-
- void append(std::initializer_list<T> IL) {
- append(IL.begin(), IL.end());
- }
-
- void append(const SmallVectorImpl& RHS) { append(RHS.begin(), RHS.end()); }
-
- void assign(size_type NumElts, ValueParamT Elt) {
- // Note that Elt could be an internal reference.
- if (NumElts > this->capacity()) {
- this->growAndAssign(NumElts, Elt);
- return;
- }
-
- // Assign over existing elements.
- std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt);
- if (NumElts > this->size())
- std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt);
- else if (NumElts < this->size())
- this->destroy_range(this->begin() + NumElts, this->end());
- this->set_size(NumElts);
- }
-
- // FIXME: Consider assigning over existing elements, rather than clearing &
- // re-initializing them - for all assign(...) variants.
-
- template <typename in_iter,
- typename = std::enable_if_t<std::is_convertible<
- typename std::iterator_traits<in_iter>::iterator_category,
- std::input_iterator_tag>::value>>
- void assign(in_iter in_start, in_iter in_end) {
- this->assertSafeToReferenceAfterClear(in_start, in_end);
- clear();
- append(in_start, in_end);
- }
-
- void assign(std::initializer_list<T> IL) {
- clear();
- append(IL);
- }
-
- void assign(const SmallVectorImpl& RHS) { assign(RHS.begin(), RHS.end()); }
-
- iterator erase(const_iterator CI) {
- // Just cast away constness because this is a non-const member function.
- iterator I = const_cast<iterator>(CI);
-
- assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds.");
-
- iterator N = I;
- // Shift all elts down one.
- std::move(I + 1, this->end(), I);
- // Drop the last elt.
- this->pop_back();
- return (N);
- }
-
- iterator erase(const_iterator CS, const_iterator CE) {
- // Just cast away constness because this is a non-const member function.
- iterator S = const_cast<iterator>(CS);
- iterator E = const_cast<iterator>(CE);
-
- assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds.");
-
- iterator N = S;
- // Shift all elts down.
- iterator I = std::move(E, this->end(), S);
- // Drop the last elts.
- this->destroy_range(I, this->end());
- this->set_size(I - this->begin());
- return (N);
- }
-
-private:
- template <typename ArgType>
- iterator insert_one_impl(iterator I, ArgType&& Elt) {
- // Callers ensure that ArgType is derived from T.
- static_assert(
- std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>,
- T>::value,
- "ArgType must be derived from T!");
-
- if (I == this->end()) { // Important special case for empty vector.
- this->push_back(::std::forward<ArgType>(Elt));
- return this->end() - 1;
- }
-
- assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
-
- // Grow if necessary.
- size_t Index = I - this->begin();
- std::remove_reference_t<ArgType>* EltPtr =
- this->reserveForParamAndGetAddress(Elt);
- I = this->begin() + Index;
-
- ::new ((void*)this->end()) T(::std::move(this->back()));
- // Push everything else over.
- std::move_backward(I, this->end() - 1, this->end());
- this->set_size(this->size() + 1);
-
- // If we just moved the element we're inserting, be sure to update
- // the reference (never happens if TakesParamByValue).
- static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value,
- "ArgType must be 'T' when taking by value!");
- if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end()))
- ++EltPtr;
-
- *I = ::std::forward<ArgType>(*EltPtr);
- return I;
- }
-
-public:
- iterator insert(iterator I, T&& Elt) {
- return insert_one_impl(I, this->forward_value_param(std::move(Elt)));
- }
-
- iterator insert(iterator I, const T& Elt) {
- return insert_one_impl(I, this->forward_value_param(Elt));
- }
-
- iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) {
- // Convert iterator to elt# to avoid invalidating iterator when we reserve()
- size_t InsertElt = I - this->begin();
-
- if (I == this->end()) { // Important special case for empty vector.
- append(NumToInsert, Elt);
- return this->begin() + InsertElt;
- }
-
- assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
-
- // Ensure there is enough space, and get the (maybe updated) address of
- // Elt.
- const T* EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert);
-
- // Uninvalidate the iterator.
- I = this->begin() + InsertElt;
-
- // If there are more elements between the insertion point and the end of the
- // range than there are being inserted, we can use a simple approach to
- // insertion. Since we already reserved space, we know that this won't
- // reallocate the vector.
- if (size_t(this->end() - I) >= NumToInsert) {
- T* OldEnd = this->end();
- append(std::move_iterator<iterator>(this->end() - NumToInsert),
- std::move_iterator<iterator>(this->end()));
-
- // Copy the existing elements that get replaced.
- std::move_backward(I, OldEnd - NumToInsert, OldEnd);
-
- // If we just moved the element we're inserting, be sure to update
- // the reference (never happens if TakesParamByValue).
- if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
- EltPtr += NumToInsert;
-
- std::fill_n(I, NumToInsert, *EltPtr);
- return I;
- }
-
- // Otherwise, we're inserting more elements than exist already, and we're
- // not inserting at the end.
-
- // Move over the elements that we're about to overwrite.
- T* OldEnd = this->end();
- this->set_size(this->size() + NumToInsert);
- size_t NumOverwritten = OldEnd - I;
- this->uninitialized_move(I, OldEnd, this->end() - NumOverwritten);
-
- // If we just moved the element we're inserting, be sure to update
- // the reference (never happens if TakesParamByValue).
- if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
- EltPtr += NumToInsert;
-
- // Replace the overwritten part.
- std::fill_n(I, NumOverwritten, *EltPtr);
-
- // Insert the non-overwritten middle part.
- std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr);
- return I;
- }
-
- template <typename ItTy,
- typename = std::enable_if_t<std::is_convertible<
- typename std::iterator_traits<ItTy>::iterator_category,
- std::input_iterator_tag>::value>>
- iterator insert(iterator I, ItTy From, ItTy To) {
- // Convert iterator to elt# to avoid invalidating iterator when we reserve()
- size_t InsertElt = I - this->begin();
-
- if (I == this->end()) { // Important special case for empty vector.
- append(From, To);
- return this->begin() + InsertElt;
- }
-
- assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
-
- // Check that the reserve that follows doesn't invalidate the iterators.
- this->assertSafeToAddRange(From, To);
-
- size_t NumToInsert = std::distance(From, To);
-
- // Ensure there is enough space.
- reserve(this->size() + NumToInsert);
-
- // Uninvalidate the iterator.
- I = this->begin() + InsertElt;
-
- // If there are more elements between the insertion point and the end of the
- // range than there are being inserted, we can use a simple approach to
- // insertion. Since we already reserved space, we know that this won't
- // reallocate the vector.
- if (size_t(this->end() - I) >= NumToInsert) {
- T* OldEnd = this->end();
- append(std::move_iterator<iterator>(this->end() - NumToInsert),
- std::move_iterator<iterator>(this->end()));
-
- // Copy the existing elements that get replaced.
- std::move_backward(I, OldEnd - NumToInsert, OldEnd);
-
- std::copy(From, To, I);
- return I;
- }
-
- // Otherwise, we're inserting more elements than exist already, and we're
- // not inserting at the end.
-
- // Move over the elements that we're about to overwrite.
- T* OldEnd = this->end();
- this->set_size(this->size() + NumToInsert);
- size_t NumOverwritten = OldEnd - I;
- this->uninitialized_move(I, OldEnd, this->end() - NumOverwritten);
-
- // Replace the overwritten part.
- for (T* J = I; NumOverwritten > 0; --NumOverwritten) {
- *J = *From;
- ++J;
- ++From;
- }
-
- // Insert the non-overwritten middle part.
- this->uninitialized_copy(From, To, OldEnd);
- return I;
- }
-
- void insert(iterator I, std::initializer_list<T> IL) {
- insert(I, IL.begin(), IL.end());
- }
-
- template <typename... ArgTypes>
- reference emplace_back(ArgTypes&&... Args) {
- if (LLVM_UNLIKELY(this->size() >= this->capacity()))
- return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...);
-
- ::new ((void*)this->end()) T(std::forward<ArgTypes>(Args)...);
- this->set_size(this->size() + 1);
- return this->back();
- }
-
- SmallVectorImpl& operator=(const SmallVectorImpl& RHS);
-
- SmallVectorImpl& operator=(SmallVectorImpl&& RHS);
-
- bool operator==(const SmallVectorImpl& RHS) const {
- if (this->size() != RHS.size()) return false;
- return std::equal(this->begin(), this->end(), RHS.begin());
- }
- bool operator!=(const SmallVectorImpl& RHS) const {
- return !(*this == RHS);
- }
-
- bool operator<(const SmallVectorImpl& RHS) const {
- return std::lexicographical_compare(this->begin(), this->end(), RHS.begin(), RHS.end());
- }
-};
-
-template <typename T>
-void SmallVectorImpl<T>::swap(SmallVectorImpl<T>& RHS) {
- if (this == &RHS) return;
-
- // We can only avoid copying elements if neither vector is small.
- if (!this->isSmall() && !RHS.isSmall()) {
- std::swap(this->BeginX, RHS.BeginX);
- std::swap(this->Size, RHS.Size);
- std::swap(this->Capacity, RHS.Capacity);
- return;
- }
- this->reserve(RHS.size());
- RHS.reserve(this->size());
-
- // Swap the shared elements.
- size_t NumShared = this->size();
- if (NumShared > RHS.size()) NumShared = RHS.size();
- for (size_type i = 0; i != NumShared; ++i)
- std::swap((*this)[i], RHS[i]);
-
- // Copy over the extra elts.
- if (this->size() > RHS.size()) {
- size_t EltDiff = this->size() - RHS.size();
- this->uninitialized_copy(this->begin() + NumShared, this->end(), RHS.end());
- RHS.set_size(RHS.size() + EltDiff);
- this->destroy_range(this->begin() + NumShared, this->end());
- this->set_size(NumShared);
- } else if (RHS.size() > this->size()) {
- size_t EltDiff = RHS.size() - this->size();
- this->uninitialized_copy(RHS.begin() + NumShared, RHS.end(), this->end());
- this->set_size(this->size() + EltDiff);
- this->destroy_range(RHS.begin() + NumShared, RHS.end());
- RHS.set_size(NumShared);
- }
-}
-
-template <typename T>
-SmallVectorImpl<T>& SmallVectorImpl<T>::
-operator=(const SmallVectorImpl<T>& RHS) {
- // Avoid self-assignment.
- if (this == &RHS) return *this;
-
- // If we already have sufficient space, assign the common elements, then
- // destroy any excess.
- size_t RHSSize = RHS.size();
- size_t CurSize = this->size();
- if (CurSize >= RHSSize) {
- // Assign common elements.
- iterator NewEnd;
- if (RHSSize)
- NewEnd = std::copy(RHS.begin(), RHS.begin() + RHSSize, this->begin());
- else
- NewEnd = this->begin();
-
- // Destroy excess elements.
- this->destroy_range(NewEnd, this->end());
-
- // Trim.
- this->set_size(RHSSize);
- return *this;
- }
-
- // If we have to grow to have enough elements, destroy the current elements.
- // This allows us to avoid copying them during the grow.
- // FIXME: don't do this if they're efficiently moveable.
- if (this->capacity() < RHSSize) {
- // Destroy current elements.
- this->clear();
- CurSize = 0;
- this->grow(RHSSize);
- } else if (CurSize) {
- // Otherwise, use assignment for the already-constructed elements.
- std::copy(RHS.begin(), RHS.begin() + CurSize, this->begin());
- }
-
- // Copy construct the new elements in place.
- this->uninitialized_copy(RHS.begin() + CurSize, RHS.end(), this->begin() + CurSize);
-
- // Set end.
- this->set_size(RHSSize);
- return *this;
-}
-
-template <typename T>
-SmallVectorImpl<T>& SmallVectorImpl<T>::operator=(SmallVectorImpl<T>&& RHS) {
- // Avoid self-assignment.
- if (this == &RHS) return *this;
-
- // If the RHS isn't small, clear this vector and then steal its buffer.
- if (!RHS.isSmall()) {
- this->assignRemote(std::move(RHS));
- return *this;
- }
-
- // If we already have sufficient space, assign the common elements, then
- // destroy any excess.
- size_t RHSSize = RHS.size();
- size_t CurSize = this->size();
- if (CurSize >= RHSSize) {
- // Assign common elements.
- iterator NewEnd = this->begin();
- if (RHSSize)
- NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
-
- // Destroy excess elements and trim the bounds.
- this->destroy_range(NewEnd, this->end());
- this->set_size(RHSSize);
-
- // Clear the RHS.
- RHS.clear();
-
- return *this;
- }
-
- // If we have to grow to have enough elements, destroy the current elements.
- // This allows us to avoid copying them during the grow.
- // FIXME: this may not actually make any sense if we can efficiently move
- // elements.
- if (this->capacity() < RHSSize) {
- // Destroy current elements.
- this->clear();
- CurSize = 0;
- this->grow(RHSSize);
- } else if (CurSize) {
- // Otherwise, use assignment for the already-constructed elements.
- std::move(RHS.begin(), RHS.begin() + CurSize, this->begin());
- }
-
- // Move-construct the new elements in place.
- this->uninitialized_move(RHS.begin() + CurSize, RHS.end(), this->begin() + CurSize);
-
- // Set end.
- this->set_size(RHSSize);
-
- RHS.clear();
- return *this;
-}
-
-/// Storage for the SmallVector elements. This is specialized for the N=0 case
-/// to avoid allocating unnecessary storage.
-template <typename T, unsigned N>
-struct SmallVectorStorage {
- alignas(T) char InlineElts[N * sizeof(T)];
-};
-
-/// We need the storage to be properly aligned even for small-size of 0 so that
-/// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
-/// well-defined.
-template <typename T>
-struct alignas(T) SmallVectorStorage<T, 0> {};
-
-/// Forward declaration of SmallVector so that
-/// calculateSmallVectorDefaultInlinedElements can reference
-/// `sizeof(SmallVector<T, 0>)`.
-template <typename T, unsigned N>
-class SmallVector;
-
-/// Helper class for calculating the default number of inline elements for
-/// `SmallVector<T>`.
-///
-/// This should be migrated to a constexpr function when our minimum
-/// compiler support is enough for multi-statement constexpr functions.
-template <typename T>
-struct CalculateSmallVectorDefaultInlinedElements {
- // Parameter controlling the default number of inlined elements
- // for `SmallVector<T>`.
- //
- // The default number of inlined elements ensures that
- // 1. There is at least one inlined element.
- // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless
- // it contradicts 1.
- static constexpr size_t kPreferredSmallVectorSizeof = 64;
-
- // static_assert that sizeof(T) is not "too big".
- //
- // Because our policy guarantees at least one inlined element, it is possible
- // for an arbitrarily large inlined element to allocate an arbitrarily large
- // amount of inline storage. We generally consider it an antipattern for a
- // SmallVector to allocate an excessive amount of inline storage, so we want
- // to call attention to these cases and make sure that users are making an
- // intentional decision if they request a lot of inline storage.
- //
- // We want this assertion to trigger in pathological cases, but otherwise
- // not be too easy to hit. To accomplish that, the cutoff is actually somewhat
- // larger than kPreferredSmallVectorSizeof (otherwise,
- // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that
- // pattern seems useful in practice).
- //
- // One wrinkle is that this assertion is in theory non-portable, since
- // sizeof(T) is in general platform-dependent. However, we don't expect this
- // to be much of an issue, because most LLVM development happens on 64-bit
- // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for
- // 32-bit hosts, dodging the issue. The reverse situation, where development
- // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a
- // 64-bit host, is expected to be very rare.
- static_assert(
- sizeof(T) <= 256,
- "You are trying to use a default number of inlined elements for "
- "`SmallVector<T>` but `sizeof(T)` is really big! Please use an "
- "explicit number of inlined elements with `SmallVector<T, N>` to make "
- "sure you really want that much inline storage.");
-
- // Discount the size of the header itself when calculating the maximum inline
- // bytes.
- static constexpr size_t PreferredInlineBytes =
- kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>);
- static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T);
- static constexpr size_t value =
- NumElementsThatFit == 0 ? 1 : NumElementsThatFit;
-};
-
-/// This is a 'vector' (really, a variable-sized array), optimized
-/// for the case when the array is small. It contains some number of elements
-/// in-place, which allows it to avoid heap allocation when the actual number of
-/// elements is below that threshold. This allows normal "small" cases to be
-/// fast without losing generality for large inputs.
-///
-/// \note
-/// In the absence of a well-motivated choice for the number of inlined
-/// elements \p N, it is recommended to use \c SmallVector<T> (that is,
-/// omitting the \p N). This will choose a default number of inlined elements
-/// reasonable for allocation on the stack (for example, trying to keep \c
-/// sizeof(SmallVector<T>) around 64 bytes).
-///
-/// \warning This does not attempt to be exception safe.
-///
-/// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h
-template <typename T,
- unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value>
-class SmallVector : public SmallVectorImpl<T>,
- SmallVectorStorage<T, N> {
-public:
- SmallVector()
- : SmallVectorImpl<T>(N) {}
-
- ~SmallVector() {
- // Destroy the constructed elements in the vector.
- this->destroy_range(this->begin(), this->end());
- }
-
- explicit SmallVector(size_t Size, const T& Value = T())
- : SmallVectorImpl<T>(N) {
- this->assign(Size, Value);
- }
-
- template <typename ItTy,
- typename = std::enable_if_t<std::is_convertible<
- typename std::iterator_traits<ItTy>::iterator_category,
- std::input_iterator_tag>::value>>
- SmallVector(ItTy S, ItTy E)
- : SmallVectorImpl<T>(N) {
- this->append(S, E);
- }
-
- template <typename RangeTy>
- explicit SmallVector(const iterator_range<RangeTy>& R)
- : SmallVectorImpl<T>(N) {
- this->append(R.begin(), R.end());
- }
-
- SmallVector(std::initializer_list<T> IL)
- : SmallVectorImpl<T>(N) {
- this->assign(IL);
- }
-
- SmallVector(const SmallVector& RHS)
- : SmallVectorImpl<T>(N) {
- if (!RHS.empty())
- SmallVectorImpl<T>::operator=(RHS);
- }
-
- SmallVector& operator=(const SmallVector& RHS) {
- SmallVectorImpl<T>::operator=(RHS);
- return *this;
- }
-
- SmallVector(SmallVector&& RHS)
- : SmallVectorImpl<T>(N) {
- if (!RHS.empty())
- SmallVectorImpl<T>::operator=(::std::move(RHS));
- }
-
- SmallVector(SmallVectorImpl<T>&& RHS)
- : SmallVectorImpl<T>(N) {
- if (!RHS.empty())
- SmallVectorImpl<T>::operator=(::std::move(RHS));
- }
-
- SmallVector& operator=(SmallVector&& RHS) {
- if (N) {
- SmallVectorImpl<T>::operator=(::std::move(RHS));
- return *this;
- }
- // SmallVectorImpl<T>::operator= does not leverage N==0. Optimize the
- // case.
- if (this == &RHS)
- return *this;
- if (RHS.empty()) {
- this->destroy_range(this->begin(), this->end());
- this->Size = 0;
- } else {
- this->assignRemote(std::move(RHS));
- }
- return *this;
- }
-
- SmallVector& operator=(SmallVectorImpl<T>&& RHS) {
- SmallVectorImpl<T>::operator=(::std::move(RHS));
- return *this;
- }
-
- SmallVector& operator=(std::initializer_list<T> IL) {
- this->assign(IL);
- return *this;
- }
-};
-
-template <typename T, unsigned N>
-inline size_t capacity_in_bytes(const SmallVector<T, N>& X) {
- return X.capacity_in_bytes();
-}
-
-template <typename RangeType>
-using ValueTypeFromRangeType =
- typename std::remove_const<typename std::remove_reference<
- decltype(*std::begin(std::declval<RangeType&>()))>::type>::type;
-
-/// Given a range of type R, iterate the entire range and return a
-/// SmallVector with elements of the vector. This is useful, for example,
-/// when you want to iterate a range and then sort the results.
-template <unsigned Size, typename R>
-SmallVector<ValueTypeFromRangeType<R>, Size> to_vector(R&& Range) {
- return { std::begin(Range), std::end(Range) };
-}
-template <typename R>
-SmallVector<ValueTypeFromRangeType<R>,
- CalculateSmallVectorDefaultInlinedElements<
- ValueTypeFromRangeType<R>>::value>
-to_vector(R&& Range) {
- return { std::begin(Range), std::end(Range) };
-}
-
-namespace std {
-
-/// Implement std::swap in terms of SmallVector swap.
-template <typename T>
-inline void swap(SmallVectorImpl<T>& LHS, SmallVectorImpl<T>& RHS) {
- LHS.swap(RHS);
-}
-
-/// Implement std::swap in terms of SmallVector swap.
-template <typename T, unsigned N>
-inline void swap(SmallVector<T, N>& LHS, SmallVector<T, N>& RHS) {
- LHS.swap(RHS);
-}
-
-} // namespace std
-
-#ifdef _MSC_VER
-# pragma warning(pop)
-#endif
diff --git a/source/10-common/StbImplementations.c b/source/10-common/StbImplementations.c
deleted file mode 100644
index 73bbc2a..0000000
--- a/source/10-common/StbImplementations.c
+++ /dev/null
@@ -1,14 +0,0 @@
-#define STB_RECT_PACK_IMPLEMENTATION
-#include <stb_rect_pack.h>
-
-#define STB_TRUETYPE_IMPLEMENTATION
-#include <stb_truetype.h>
-
-#define STB_IMAGE_IMPLEMENTATION
-#include <stb_image.h>
-
-#define STB_SPRINTF_IMPLEMENTATION
-#include <stb_sprintf.h>
-
-#define STB_C_LEXER_IMPLEMENTATION
-#include <stb_c_lexer.h>
diff --git a/source/10-common/Type2ObjectMap.hpp b/source/10-common/Type2ObjectMap.hpp
deleted file mode 100644
index 0976d2e..0000000
--- a/source/10-common/Type2ObjectMap.hpp
+++ /dev/null
@@ -1,38 +0,0 @@
-#pragma once
-
-#include "TypeTraits.hpp"
-
-#include <cstddef>
-
-template <typename TValue>
-class Type2ObjectMap {
-public:
- template <typename TType>
- TType& Insert(TType&& value) {
- // TODO
- }
-
- template <typename TType>
- TType& InsertOrAssign(TType& value) {
- // TODO
- }
-
- template <typename TType>
- TType Remove() {
- // TODO
- }
-
- template <typename TType>
- const TValue* Find() const {
- // TODO
- }
-
- template <typename TType>
- TValue* Find() {
- return const_cast<TValue*>(const_cast<const Type2ObjectMap*>(this)->Find<TType>());
- }
-
- size_t size() const {
- // TODO
- }
-};
diff --git a/source/10-common/TypeTraits.hpp b/source/10-common/TypeTraits.hpp
deleted file mode 100644
index 73a56f9..0000000
--- a/source/10-common/TypeTraits.hpp
+++ /dev/null
@@ -1,27 +0,0 @@
-#pragma once
-
-#include <cstddef>
-
-/// This template will be instanciated for each unique type, and the char variable will be ODR-used which gives it an unique address.
-template <typename T>
-struct TypeIdentifier {
- static const char obj = 0;
-};
-
-template <typename T>
-struct DefaultDeleter {
- void operator()(T* ptr) const {
- delete ptr;
- }
-};
-
-template <typename>
-struct RemoveMemberPtrImpl {};
-
-template <typename T, typename U>
-struct RemoveMemberPtrImpl<U T::*> {
- using Type = U;
-};
-
-template <typename T>
-using RemoveMemberPtr = typename RemoveMemberPtrImpl<T>::Type;
diff --git a/source/10-common/Uid.cpp b/source/10-common/Uid.cpp
deleted file mode 100644
index 58dfffd..0000000
--- a/source/10-common/Uid.cpp
+++ /dev/null
@@ -1,70 +0,0 @@
-#include "Uid.hpp"
-
-#include "RapidJsonHelper.hpp"
-
-#include <rapidjson/document.h>
-#include <cstring>
-#include <random>
-
-Uid Uid::Create() {
- std::random_device rd;
- std::mt19937_64 gen(rd());
- std::uniform_int_distribution<uint64_t> dist(
- std::numeric_limits<uint64_t>::min(),
- std::numeric_limits<uint64_t>::max());
-
- Uid uid;
- uid.upper = dist(gen);
- uid.lower = dist(gen);
- return uid;
-}
-
-bool Uid::IsNull() const {
- return upper == 0 && lower == 0;
-}
-
-void Uid::ReadString(std::string_view str) {
- sscanf(str.data(), BRUSSEL_Uid_SCAN_STR, &upper, &lower);
-}
-
-std::string Uid::WriteString() {
- char buf[256];
- snprintf(buf, sizeof(buf), BRUSSEL_Uid_FORMAT_STR, upper, lower);
- return std::string(buf);
-}
-
-void Uid::Read(const rapidjson::Value& value) {
- if (value.IsString()) {
- ReadString(rapidjson::AsStringView(value));
- } else if (value.IsArray()) {
- // Compatibility support
- assert(value.Size() == 2);
- auto& upper = value[0];
- assert(upper.IsUint64());
- auto& lower = value[1];
- assert(lower.IsUint64());
-
- this->upper = upper.GetUint64();
- this->lower = lower.GetUint64();
- } else {
- assert(false);
- }
-}
-
-void Uid::WriteInto(rapidjson::Value& value, rapidjson::Document& root) const {
-#if BRUSSEL_Uid_WRITE_USE_ARRAY
- value.Reserve(2, root.GetAllocator());
- value.PushBack((uint64_t)upper, root.GetAllocator());
- value.PushBack((uint64_t)lower, root.GetAllocator());
-#else
- char buf[256];
- int len = snprintf(buf, sizeof(buf), BRUSSEL_Uid_FORMAT_STR, upper, lower);
- value.SetString(buf, len, root.GetAllocator());
-#endif
-}
-
-rapidjson::Value Uid::Write(rapidjson::Document& root) const {
- rapidjson::Value result(rapidjson::kArrayType);
- WriteInto(result, root);
- return result;
-}
diff --git a/source/10-common/Uid.hpp b/source/10-common/Uid.hpp
deleted file mode 100644
index a691911..0000000
--- a/source/10-common/Uid.hpp
+++ /dev/null
@@ -1,46 +0,0 @@
-#pragma once
-
-#include "Utils.hpp"
-
-#include <rapidjson/fwd.h>
-#include <cinttypes>
-#include <functional>
-#include <string>
-#include <string_view>
-
-#define BRUSSEL_Uid_SCAN_STR "%" PRIx64 "-%" PRIx64
-#define BRUSSEL_Uid_SCAN_EXPAND(uid) &((uid).upper), &((uid).upper)
-#define BRUSSEL_Uid_FORMAT_STR "%016" PRIx64 "-%016" PRIx64
-#define BRUSSEL_Uid_FORMAT_EXPAND(uid) (uid).upper, (uid).lower
-
-// Serialize Uid object as an array with two elements, instead of the simple string format
-#define BRUSSEL_Uid_WRITE_USE_ARRAY 0
-
-struct Uid {
- uint64_t upper = 0;
- uint64_t lower = 0;
-
- // Generate a random Uid
- static Uid Create();
-
- bool IsNull() const;
-
- void ReadString(std::string_view str);
- std::string WriteString();
-
- void Read(const rapidjson::Value& value);
- void WriteInto(rapidjson::Value& value, rapidjson::Document& root) const;
- rapidjson::Value Write(rapidjson::Document& root) const;
-
- auto operator<=>(const Uid&) const = default;
-};
-
-template <>
-struct std::hash<Uid> {
- size_t operator()(const Uid& uid) const {
- size_t hash = 0;
- Utils::HashCombine(hash, uid.upper);
- Utils::HashCombine(hash, uid.lower);
- return hash;
- }
-};
diff --git a/source/10-common/Utils.cpp b/source/10-common/Utils.cpp
deleted file mode 100644
index f0ff76d..0000000
--- a/source/10-common/Utils.cpp
+++ /dev/null
@@ -1,130 +0,0 @@
-#include "Utils.hpp"
-
-#include "Macros.hpp"
-#include "ScopeGuard.hpp"
-
-#ifdef _WIN32
-# include <Windows.h>
-#endif
-
-namespace fs = std::filesystem;
-
-#ifdef _WIN32
-# define BRUSSEL_MODE_STRING(string) L##string
-#else
-# define BRUSSEL_MODE_STRING(string) string
-#endif
-
-#if _WIN32
-using FopenModeString = const wchar_t*;
-#else
-using FopenModeString = const char*;
-#endif
-
-static FopenModeString GetModeString(Utils::IoMode mode, bool binary) {
- using namespace Utils;
- if (binary) {
- switch (mode) {
- case Read: return BRUSSEL_MODE_STRING("rb");
- case WriteTruncate: return BRUSSEL_MODE_STRING("wb");
- case WriteAppend: return BRUSSEL_MODE_STRING("ab");
- }
- } else {
- switch (mode) {
- case Read: return BRUSSEL_MODE_STRING("r");
- case WriteTruncate: return BRUSSEL_MODE_STRING("w");
- case WriteAppend: return BRUSSEL_MODE_STRING("a");
- }
- }
- return nullptr;
-}
-
-FILE* Utils::OpenCstdioFile(const fs::path& path, IoMode mode, bool binary) {
-#ifdef _WIN32
- // fs::path::c_str() returns `const wchar_t*` under Windows, because NT uses UTF-16 natively
- // NOTE: _wfopen() only affects the type of path parameter, otherwise the file stream created is identical to the one by fopen()
- return _wfopen(path.c_str(), ::GetModeString(mode, binary));
-#else
- return fopen(path.c_str(), ::GetModeString(mode, binary));
-#endif
-}
-
-FILE* Utils::OpenCstdioFile(const char* path, IoMode mode, bool binary) {
-#ifdef _WIN32
- // On Windows, fopen() accepts ANSI codepage encoded path, convert our UTF-8 string to UTF-16 to ensure that no matter what the locale is, the path continues to work
- WCHAR platformPath[MAX_PATH];
- if (MultiByteToWideChar(CP_UTF8, 0, path, -1, platformPath, MAX_PATH) == 0) {
- return nullptr;
- }
- return _wfopen(platformPath, ::GetModeString(mode, binary));
-#else
- return fopen(path, ::GetModeString(mode, binary));
-#endif
-}
-
-std::string Utils::ReadFileAsString(const fs::path& path) {
- auto file = Utils::OpenCstdioFile(path, Utils::Read);
- if (!file) throw std::runtime_error("Failed to open source file.");
- DEFER { fclose(file); };
-
- fseek(file, 0, SEEK_END);
- auto fileSize = ftell(file);
- rewind(file);
-
- std::string result(fileSize, '\0');
- fread(result.data(), fileSize, 1, file);
-
- return result;
-}
-
-bool Utils::ReadCstdioLine(FILE* file, std::string& buffer) {
- buffer.clear();
- while (true) {
- int c = fgetc(file);
- if (c == EOF) {
- if (buffer.empty() || buffer.back() != '\n') {
- buffer += '\n';
- }
- return false;
- } else if (c == '\n') {
- buffer += '\n';
- return true;
- } else {
- buffer += c;
- }
- }
-}
-
-bool Utils::ReadCstdioLine(FILE* file, char* buffer, size_t bufferSize, size_t* outLineLength) {
- // TODO
- assert(false && "Unimplemented");
-}
-
-bool Utils::InRangeInclusive(int n, int lower, int upper) {
- if (lower > upper) {
- std::swap(lower, upper);
- }
- return n >= lower && n <= upper;
-}
-
-bool Utils::LineContains(glm::ivec2 p1, glm::ivec2 p2, glm::ivec2 candidate) {
- bool verticalLine = p1.x == p2.x && InRangeInclusive(candidate.x, p1.x, p2.x);
- bool horizontalLine = p1.y == p2.y && InRangeInclusive(candidate.y, p1.y, p2.y);
- return verticalLine && horizontalLine;
-}
-
-bool Utils::IsColinear(glm::ivec2 p1, glm::ivec2 p2) {
- return p1.x == p2.x || p1.y == p2.y;
-}
-
-std::string Utils::MakeRandomNumberedName(const char* tag) {
- int n = std::rand();
-#define RNG_NAME_PATTERN "Unnamed %s #%d", tag, n
- // NOTE: does not include null-terminator
- int size = snprintf(nullptr, 0, RNG_NAME_PATTERN);
- std::string result;
- result.resize(size); // std::string::resize handles storage for null-terminator alreaedy
- snprintf(result.data(), size, RNG_NAME_PATTERN);
-#undef RNG_NAME_PATTERN
- return result;
-}
diff --git a/source/10-common/Utils.hpp b/source/10-common/Utils.hpp
deleted file mode 100644
index 668261b..0000000
--- a/source/10-common/Utils.hpp
+++ /dev/null
@@ -1,77 +0,0 @@
-#pragma once
-
-#include <robin_hood.h>
-#include <cstdio>
-#include <cstring>
-#include <filesystem>
-#include <glm/glm.hpp>
-#include <string>
-#include <string_view>
-
-namespace Utils {
-
-enum IoMode {
- Read,
- WriteTruncate,
- WriteAppend,
-};
-
-FILE* OpenCstdioFile(const std::filesystem::path& path, IoMode mode, bool binary = false);
-FILE* OpenCstdioFile(const char* path, IoMode mode, bool binary = false);
-
-/// Retrieve a whole line (marked by `\n` or EOF) into the buffer. If the line ends with EOF, two things happen:
-/// 1. a `\n` character is appended to the line content, emulating as-if the line ended with `\n`.
-/// 2. `false` is returned
-/// Otherwise, `true` is returned.
-///
-/// Empty lines are not skipped at all, including the very last empty line if it exists.
-bool ReadCstdioLine(FILE* file, std::string& buffer);
-/// Same as the other overload, except working with a fixed-size buffer.
-/// NOTE: this also gives the length of the line compared to `std::fgets`.
-/// `std::fgets` requires us to run `std::strlen` on the output again to find the length
-bool ReadCstdioLine(FILE* file, char* buffer, size_t bufferSize, size_t* outLineLength = nullptr);
-
-std::string ReadFileAsString(const std::filesystem::path& path);
-
-constexpr float Abs(float v) noexcept {
- return v < 0.0f ? -v : v;
-}
-
-bool InRangeInclusive(int n, int lower, int upper);
-bool LineContains(glm::ivec2 p1, glm::ivec2 p2, glm::ivec2 candidate);
-
-bool IsColinear(glm::ivec2 p1, glm::ivec2 p2);
-
-template <typename T>
-void HashCombine(std::size_t& seed, const T& v) {
- seed ^= std::hash<T>{}(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
-}
-
-std::string MakeRandomNumberedName(const char* tag);
-
-} // namespace Utils
-
-struct StringHash {
- using is_transparent = void;
-
- std::size_t operator()(const std::string& key) const { return robin_hood::hash_bytes(key.c_str(), key.size()); }
- std::size_t operator()(std::string_view key) const { return robin_hood::hash_bytes(key.data(), key.size()); }
- std::size_t operator()(const char* key) const { return robin_hood::hash_bytes(key, std::strlen(key)); }
-};
-
-struct StringEqual {
- using is_transparent = int;
-
- bool operator()(std::string_view lhs, const std::string& rhs) const {
- const std::string_view view = rhs;
- return lhs == view;
- }
-
- bool operator()(const char* lhs, const std::string& rhs) const {
- return std::strcmp(lhs, rhs.c_str()) == 0;
- }
-
- bool operator()(const std::string& lhs, const std::string& rhs) const {
- return lhs == rhs;
- }
-};
diff --git a/source/10-common/YCombinator.hpp b/source/10-common/YCombinator.hpp
deleted file mode 100644
index 2da06c8..0000000
--- a/source/10-common/YCombinator.hpp
+++ /dev/null
@@ -1,14 +0,0 @@
-#pragma once
-
-template <typename Func>
-struct YCombinator {
- // NOTE: implicit constructor allows initializing this
- Func func;
-
- template <typename... Ts>
- decltype(auto) operator()(Ts&&... args) const {
- // NOTE: static_cast<Ts>(args)... is equivalent to std::forward<Ts>(args)...
- // written this way so that we don't have to include <utility>, as well as reducing template instanciations to help compile time
- return func(*this, static_cast<Ts>(args)...);
- }
-};