diff options
author | rtk0c <[email protected]> | 2022-06-03 23:25:43 -0700 |
---|---|---|
committer | rtk0c <[email protected]> | 2022-06-03 23:25:43 -0700 |
commit | c2ef7737536bf1f8c81fcfae95c0183b21c9753f (patch) | |
tree | 903178f538f4d66e48a91e82827a0c91a0e42f99 /3rdparty/glm/source/test/gtx/gtx_pca.cpp | |
parent | 8510a85f79f706b93982b4e398b187b5f77081dd (diff) |
Changeset: 62 Branch comment: [] [WIP] Initial migration
Diffstat (limited to '3rdparty/glm/source/test/gtx/gtx_pca.cpp')
-rw-r--r-- | 3rdparty/glm/source/test/gtx/gtx_pca.cpp | 724 |
1 files changed, 0 insertions, 724 deletions
diff --git a/3rdparty/glm/source/test/gtx/gtx_pca.cpp b/3rdparty/glm/source/test/gtx/gtx_pca.cpp deleted file mode 100644 index 120e277..0000000 --- a/3rdparty/glm/source/test/gtx/gtx_pca.cpp +++ /dev/null @@ -1,724 +0,0 @@ -#define GLM_ENABLE_EXPERIMENTAL -#include <glm/glm.hpp> -#include <glm/gtx/pca.hpp> -#include <glm/gtc/epsilon.hpp> -#include <glm/gtx/string_cast.hpp> - -#include <cstdio> -#include <vector> -#if GLM_HAS_CXX11_STL == 1 -#include <random> -#endif - -template<typename T> -T myEpsilon(); -template<> -GLM_INLINE GLM_CONSTEXPR float myEpsilon<float>() { return 0.00001f; } -template<> -GLM_INLINE GLM_CONSTEXPR double myEpsilon<double>() { return 0.000001; } - -template<glm::length_t D, typename T, glm::qualifier Q> -bool vectorEpsilonEqual(glm::vec<D, T, Q> const& a, glm::vec<D, T, Q> const& b, T epsilon) -{ - for (int c = 0; c < D; ++c) - if (!glm::epsilonEqual(a[c], b[c], epsilon)) - { - fprintf(stderr, "failing vectorEpsilonEqual: [%d] %lf != %lf (~%lf)\n", - c, - static_cast<double>(a[c]), - static_cast<double>(b[c]), - static_cast<double>(epsilon) - ); - return false; - } - return true; -} - -template<glm::length_t D, typename T, glm::qualifier Q> -bool matrixEpsilonEqual(glm::mat<D, D, T, Q> const& a, glm::mat<D, D, T, Q> const& b, T epsilon) -{ - for (int c = 0; c < D; ++c) - for (int r = 0; r < D; ++r) - if (!glm::epsilonEqual(a[c][r], b[c][r], epsilon)) - { - fprintf(stderr, "failing vectorEpsilonEqual: [%d][%d] %lf != %lf (~%lf)\n", - c, r, - static_cast<double>(a[c][r]), - static_cast<double>(b[c][r]), - static_cast<double>(epsilon) - ); - return false; - } - return true; -} - -template<typename T> -GLM_INLINE bool sameSign(T const& a, T const& b) -{ - return ((a >= 0) && (b >= 0)) || ((a < 0) && (b < 0)); -} - -template<typename T> -T failReport(T line) -{ - fprintf(stderr, "Failed in line %d\n", static_cast<int>(line)); - return line; -} - -// Test data: 1AGA 'agarose double helix' -// https://www.rcsb.org/structure/1aga -// The fourth coordinate is randomized -namespace _1aga -{ - - // Fills `outTestData` with hard-coded atom positions from 1AGA - // The fourth coordinate is randomized - template<typename vec> - void fillTestData(std::vector<vec>& outTestData) - { - // x,y,z coordinates copied from RCSB PDB file of 1AGA - // w coordinate randomized with standard normal distribution - static const double _1aga[] = { - 3.219, -0.637, 19.462, 2.286, - 4.519, 0.024, 18.980, -0.828, - 4.163, 1.425, 18.481, -0.810, - 3.190, 1.341, 17.330, -0.170, - 1.962, 0.991, 18.165, 0.816, - 2.093, 1.952, 19.331, 0.276, - 5.119, -0.701, 17.908, -0.490, - 3.517, 2.147, 19.514, -0.207, - 2.970, 2.609, 16.719, 0.552, - 2.107, -0.398, 18.564, 0.403, - 2.847, 2.618, 15.335, 0.315, - 1.457, 3.124, 14.979, 0.683, - 1.316, 3.291, 13.473, 0.446, - 2.447, 4.155, 12.931, 1.324, - 3.795, 3.614, 13.394, 0.112, - 4.956, 4.494, 12.982, 0.253, - 0.483, 2.217, 15.479, 1.316, - 0.021, 3.962, 13.166, 1.522, - 2.311, 5.497, 13.395, 0.248, - 3.830, 3.522, 14.827, 0.591, - 5.150, 4.461, 11.576, 0.635, - -1.057, 3.106, 13.132, 0.191, - -2.280, 3.902, 12.650, 1.135, - -3.316, 2.893, 12.151, 0.794, - -2.756, 2.092, 11.000, 0.720, - -1.839, 1.204, 11.835, -1.172, - -2.737, 0.837, 13.001, -0.313, - -1.952, 4.784, 11.578, 2.082, - -3.617, 1.972, 13.184, 0.653, - -3.744, 1.267, 10.389, -0.413, - -0.709, 2.024, 12.234, -1.747, - -3.690, 1.156, 9.005, -1.275, - -3.434, -0.300, 8.649, 0.441, - -3.508, -0.506, 7.143, 0.237, - -4.822, 0.042, 6.601, -2.856, - -5.027, 1.480, 7.064, 0.985, - -6.370, 2.045, 6.652, 0.915, - -2.162, -0.690, 9.149, 1.100, - -3.442, -1.963, 6.836, -0.081, - -5.916, -0.747, 7.065, -2.345, - -4.965, 1.556, 8.497, 0.504, - -6.439, 2.230, 5.246, 1.451, - -2.161, -2.469, 6.802, -1.171, - -2.239, -3.925, 6.320, -1.434, - -0.847, -4.318, 5.821, 0.098, - -0.434, -3.433, 4.670, -1.446, - -0.123, -2.195, 5.505, 0.182, - 0.644, -2.789, 6.671, 0.865, - -3.167, -4.083, 5.248, -0.098, - 0.101, -4.119, 6.854, -0.001, - 0.775, -3.876, 4.059, 1.061, - -1.398, -1.625, 5.904, 0.230, - 0.844, -3.774, 2.675, 1.313, - 1.977, -2.824, 2.319, -0.112, - 2.192, -2.785, 0.813, -0.981, - 2.375, -4.197, 0.271, -0.355, - 1.232, -5.093, 0.734, 0.632, - 1.414, -6.539, 0.322, 0.576, - 1.678, -1.527, 2.819, -1.187, - 3.421, -1.999, 0.496, -1.770, - 3.605, -4.750, 0.735, 1.099, - 1.135, -5.078, 2.167, 0.854, - 1.289, -6.691, -1.084, -0.487, - -1.057, 3.106, 22.602, -1.297, - -2.280, 3.902, 22.120, 0.376, - -3.316, 2.893, 21.621, 0.932, - -2.756, 2.092, 20.470, 1.680, - -1.839, 1.204, 21.305, 0.615, - -2.737, 0.837, 22.471, 0.899, - -1.952, 4.784, 21.048, -0.521, - -3.617, 1.972, 22.654, 0.133, - -3.744, 1.267, 19.859, 0.081, - -0.709, 2.024, 21.704, 1.420, - -3.690, 1.156, 18.475, -0.850, - -3.434, -0.300, 18.119, -0.249, - -3.508, -0.506, 16.613, 1.434, - -4.822, 0.042, 16.071, -2.466, - -5.027, 1.480, 16.534, -1.045, - -6.370, 2.045, 16.122, 1.707, - -2.162, -0.690, 18.619, -2.023, - -3.442, -1.963, 16.336, -0.304, - -5.916, -0.747, 16.535, 0.979, - -4.965, 1.556, 17.967, -1.165, - -6.439, 2.230, 14.716, 0.929, - -2.161, -2.469, 16.302, -0.234, - -2.239, -3.925, 15.820, -0.228, - -0.847, -4.318, 15.321, 1.844, - -0.434, -3.433, 14.170, 1.132, - -0.123, -2.195, 15.005, 0.211, - 0.644, -2.789, 16.171, -0.632, - -3.167, -4.083, 14.748, -0.519, - 0.101, -4.119, 16.354, 0.173, - 0.775, -3.876, 13.559, 1.243, - -1.398, -1.625, 15.404, -0.187, - 0.844, -3.774, 12.175, -1.332, - 1.977, -2.824, 11.819, -1.616, - 2.192, -2.785, 10.313, 1.320, - 2.375, -4.197, 9.771, 0.237, - 1.232, -5.093, 10.234, 0.851, - 1.414, -6.539, 9.822, 1.816, - 1.678, -1.527, 12.319, -1.657, - 3.421, -1.999, 10.036, 1.559, - 3.605, -4.750, 10.235, 0.831, - 1.135, -5.078, 11.667, 0.060, - 1.289, -6.691, 8.416, 1.066, - 3.219, -0.637, 10.002, 2.111, - 4.519, 0.024, 9.520, -0.874, - 4.163, 1.425, 9.021, -1.012, - 3.190, 1.341, 7.870, -0.250, - 1.962, 0.991, 8.705, -1.359, - 2.093, 1.952, 9.871, -0.126, - 5.119, -0.701, 8.448, 0.995, - 3.517, 2.147, 10.054, 0.941, - 2.970, 2.609, 7.259, -0.562, - 2.107, -0.398, 9.104, -0.038, - 2.847, 2.618, 5.875, 0.398, - 1.457, 3.124, 5.519, 0.481, - 1.316, 3.291, 4.013, -0.187, - 2.447, 4.155, 3.471, -0.429, - 3.795, 3.614, 3.934, -0.432, - 4.956, 4.494, 3.522, -0.788, - 0.483, 2.217, 6.019, -0.923, - 0.021, 3.962, 3.636, -0.316, - 2.311, 5.497, 3.935, -1.917, - 3.830, 3.522, 5.367, -0.302, - 5.150, 4.461, 2.116, -1.615 - }; - static const glm::length_t _1agaSize = sizeof(_1aga) / (4 * sizeof(double)); - - outTestData.resize(_1agaSize); - for(glm::length_t i = 0; i < _1agaSize; ++i) - for(glm::length_t d = 0; d < static_cast<glm::length_t>(vec::length()); ++d) - outTestData[i][d] = static_cast<typename vec::value_type>(_1aga[i * 4 + d]); - } - - // All reference values computed separately using symbolic precision - // https://github.com/sgrottel/exp-pca-precision - // This applies to all functions named: `_1aga::expected*()` - - GLM_INLINE glm::dmat4 const& expectedCovarData() - { - static const glm::dmat4 covar4x4d( - 9.62434068027210898322, -0.00006657369614512471, -4.29321376568405099761, 0.01879374187452758846, - -0.00006657369614512471, 9.62443937868480681175, 5.35113872637944076871, -0.11569259145880574080, - -4.29321376568405099761, 5.35113872637944076871, 35.62848549634668415820, 0.90874239254220201545, - 0.01879374187452758846, -0.11569259145880574080, 0.90874239254220201545, 1.09705971856890904803 - ); - return covar4x4d; - } - - template<glm::length_t D> - GLM_INLINE glm::vec<D, double, glm::defaultp> const& expectedEigenvalues(); - template<> - GLM_INLINE glm::dvec2 const& expectedEigenvalues<2>() - { - static const glm::dvec2 evals2( - 9.62447289926297399961763301774251330057894539467032275382255, - 9.62430715969394210015560961264297422776572580714373620309355 - ); - return evals2; - } - template<> - GLM_INLINE glm::dvec3 const& expectedEigenvalues<3>() - { - static const glm::dvec3 evals3( - 37.3274494274683425233695502581182052836449738530676689472257, - 9.62431434161498823505729817436585077939509766554969096873168, - 7.92550178622027216422369326567668971675332732240052872097887 - ); - return evals3; - } - template<> - GLM_INLINE glm::dvec4 const& expectedEigenvalues<4>() - { - static const glm::dvec4 evals4( - 37.3477389918792213596879452204499702406947817221901007885630, - 9.62470688921105696017807313860277172063600080413412567999700, - 7.94017075281634999342344275928070533134615133171969063657713, - 1.06170863996588365446060186982477896078741484440002343404155 - ); - return evals4; - } - - template<glm::length_t D> - GLM_INLINE glm::mat<D, D, double, glm::defaultp> const& expectedEigenvectors(); - template<> - GLM_INLINE glm::dmat2 const& expectedEigenvectors<2>() - { - static const glm::dmat2 evecs2( - glm::dvec2( - -0.503510847492551904906870957742619139443409162857537237123308, - 1 - ), - glm::dvec2( - 1.98605453086051402895741763848787613048533838388005162794043, - 1 - ) - ); - return evecs2; - } - template<> - GLM_INLINE glm::dmat3 const& expectedEigenvectors<3>() - { - static const glm::dmat3 evecs3( - glm::dvec3( - -0.154972738414395866005286433008304444294405085038689821864654, - 0.193161285869815165989799191097521722568079378840201629578695, - 1 - ), - glm::dvec3( - -158565.112775416943154745839952575022429933119522746586149868, - -127221.506282351944358932458687410410814983610301927832439675, - 1 - ), - glm::dvec3( - 2.52702248596556806145700361724323960543858113426446460406536, - -3.14959802931313870497377546974185300816008580801457419079412, - 1 - ) - ); - return evecs3; - } - template<> - GLM_INLINE glm::dmat4 const& expectedEigenvectors<4>() - { - static const glm::dmat4 evecs4( - glm::dvec4( - -6.35322390281037045217295803597357821705371650876122113027264, - 7.91546394153385394517767054617789939529794642646629201212056, - 41.0301543819240679808549819457450130787045236815736490549663, - 1 - ), - glm::dvec4( - -114.622418941087829756565311692197154422302604224781253861297, - -92.2070185807065289900871215218752013659402949497379896153118, - 0.0155846091025912430932734548933329458404665760587569100867246, - 1 - ), - glm::dvec4( - 13.1771887761559019483954743159026938257325190511642952175789, - -16.3688257459634877666638419310116970616615816436949741766895, - 5.17386502341472097227408249233288958059579189051394773143190, - 1 - ), - glm::dvec4( - -0.0192777078948229800494895064532553117703859768210647632969276, - 0.0348034950916108873629241563077465542944938906271231198634442, - -0.0340715609308469289267379681032545422644143611273049912226126, - 1 - ) - ); - return evecs4; - } - -} // namespace _1aga - -// Compute center of gravity -template<typename vec> -vec computeCenter(const std::vector<vec>& testData) -{ - double c[4]; - std::fill(c, c + vec::length(), 0.0); - - typename std::vector<vec>::const_iterator e = testData.end(); - for(typename std::vector<vec>::const_iterator i = testData.begin(); i != e; ++i) - for(glm::length_t d = 0; d < static_cast<glm::length_t>(vec::length()); ++d) - c[d] += static_cast<double>((*i)[d]); - - vec cVec(0); - for(glm::length_t d = 0; d < static_cast<glm::length_t>(vec::length()); ++d) - cVec[d] = static_cast<typename vec::value_type>(c[d] / static_cast<double>(testData.size())); - return cVec; -} - -// Test sorting of Eigenvalue&Eigenvector lists. Use exhaustive search. -template<glm::length_t D, typename T, glm::qualifier Q> -int testEigenvalueSort() -{ - // Test input data: four arbitrary values - static const glm::vec<D, T, Q> refVal( - glm::vec<4, T, Q>( - 10, 8, 6, 4 - ) - ); - // Test input data: four arbitrary vectors, which can be matched to the above values - static const glm::mat<D, D, T, Q> refVec( - glm::mat<4, 4, T, Q>( - 10, 20, 5, 40, - 8, 16, 4, 32, - 6, 12, 3, 24, - 4, 8, 2, 16 - ) - ); - // Permutations of test input data for exhaustive check, based on `D` (1 <= D <= 4) - static const int permutationCount[] = { - 0, - 1, - 2, - 6, - 24 - }; - // The permutations t perform, based on `D` (1 <= D <= 4) - static const glm::ivec4 permutation[] = { - glm::ivec4(0, 1, 2, 3), - glm::ivec4(1, 0, 2, 3), // last for D = 2 - glm::ivec4(0, 2, 1, 3), - glm::ivec4(1, 2, 0, 3), - glm::ivec4(2, 0, 1, 3), - glm::ivec4(2, 1, 0, 3), // last for D = 3 - glm::ivec4(0, 1, 3, 2), - glm::ivec4(1, 0, 3, 2), - glm::ivec4(0, 2, 3, 1), - glm::ivec4(1, 2, 3, 0), - glm::ivec4(2, 0, 3, 1), - glm::ivec4(2, 1, 3, 0), - glm::ivec4(0, 3, 1, 2), - glm::ivec4(1, 3, 0, 2), - glm::ivec4(0, 3, 2, 1), - glm::ivec4(1, 3, 2, 0), - glm::ivec4(2, 3, 0, 1), - glm::ivec4(2, 3, 1, 0), - glm::ivec4(3, 0, 1, 2), - glm::ivec4(3, 1, 0, 2), - glm::ivec4(3, 0, 2, 1), - glm::ivec4(3, 1, 2, 0), - glm::ivec4(3, 2, 0, 1), - glm::ivec4(3, 2, 1, 0) // last for D = 4 - }; - - // initial sanity check - if(!vectorEpsilonEqual(refVal, refVal, myEpsilon<T>())) - return failReport(__LINE__); - if(!matrixEpsilonEqual(refVec, refVec, myEpsilon<T>())) - return failReport(__LINE__); - - // Exhaustive search through all permutations - for(int p = 0; p < permutationCount[D]; ++p) - { - glm::vec<D, T, Q> testVal; - glm::mat<D, D, T, Q> testVec; - for(int i = 0; i < D; ++i) - { - testVal[i] = refVal[permutation[p][i]]; - testVec[i] = refVec[permutation[p][i]]; - } - - glm::sortEigenvalues(testVal, testVec); - - if (!vectorEpsilonEqual(testVal, refVal, myEpsilon<T>())) - return failReport(__LINE__); - if (!matrixEpsilonEqual(testVec, refVec, myEpsilon<T>())) - return failReport(__LINE__); - } - - return 0; -} - -// Test covariance matrix creation functions -template<glm::length_t D, typename T, glm::qualifier Q> -int testCovar( -#if GLM_HAS_CXX11_STL == 1 - glm::length_t dataSize, unsigned int randomEngineSeed -#else // GLM_HAS_CXX11_STL == 1 - glm::length_t, unsigned int -#endif // GLM_HAS_CXX11_STL == 1 -) -{ - typedef glm::vec<D, T, Q> vec; - typedef glm::mat<D, D, T, Q> mat; - - // #1: test expected result with fixed data set - std::vector<vec> testData; - _1aga::fillTestData(testData); - - // compute center of gravity - vec center = computeCenter(testData); - - mat covarMat = glm::computeCovarianceMatrix(testData.data(), testData.size(), center); - if(!matrixEpsilonEqual(covarMat, mat(_1aga::expectedCovarData()), myEpsilon<T>())) - { - fprintf(stderr, "Reconstructed covarMat:\n%s\n", glm::to_string(covarMat).c_str()); - return failReport(__LINE__); - } - - // #2: test function variant consitency with random data -#if GLM_HAS_CXX11_STL == 1 - std::default_random_engine rndEng(randomEngineSeed); - std::normal_distribution<T> normalDist; - testData.resize(dataSize); - // some common offset of all data - T offset[D]; - for(glm::length_t d = 0; d < D; ++d) - offset[d] = normalDist(rndEng); - // init data - for(glm::length_t i = 0; i < dataSize; ++i) - for(glm::length_t d = 0; d < D; ++d) - testData[i][d] = offset[d] + normalDist(rndEng); - center = computeCenter(testData); - - std::vector<vec> centeredTestData; - centeredTestData.reserve(testData.size()); - typename std::vector<vec>::const_iterator e = testData.end(); - for(typename std::vector<vec>::const_iterator i = testData.begin(); i != e; ++i) - centeredTestData.push_back((*i) - center); - - mat c1 = glm::computeCovarianceMatrix(centeredTestData.data(), centeredTestData.size()); - mat c2 = glm::computeCovarianceMatrix<D, T, Q>(centeredTestData.begin(), centeredTestData.end()); - mat c3 = glm::computeCovarianceMatrix(testData.data(), testData.size(), center); - mat c4 = glm::computeCovarianceMatrix<D, T, Q>(testData.rbegin(), testData.rend(), center); - - if(!matrixEpsilonEqual(c1, c2, myEpsilon<T>())) - return failReport(__LINE__); - if(!matrixEpsilonEqual(c1, c3, myEpsilon<T>())) - return failReport(__LINE__); - if(!matrixEpsilonEqual(c1, c4, myEpsilon<T>())) - return failReport(__LINE__); -#endif // GLM_HAS_CXX11_STL == 1 - return 0; -} - -// Computes eigenvalues and eigenvectors from well-known covariance matrix -template<glm::length_t D, typename T, glm::qualifier Q> -int testEigenvectors(T epsilon) -{ - typedef glm::vec<D, T, Q> vec; - typedef glm::mat<D, D, T, Q> mat; - - // test expected result with fixed data set - std::vector<vec> testData; - mat covarMat(_1aga::expectedCovarData()); - - vec eigenvalues; - mat eigenvectors; - unsigned int c = glm::findEigenvaluesSymReal(covarMat, eigenvalues, eigenvectors); - if(c != D) - return failReport(__LINE__); - glm::sortEigenvalues(eigenvalues, eigenvectors); - - if (!vectorEpsilonEqual(eigenvalues, vec(_1aga::expectedEigenvalues<D>()), epsilon)) - return failReport(__LINE__); - - for (int i = 0; i < D; ++i) - { - vec act = glm::normalize(eigenvectors[i]); - vec exp = glm::normalize(_1aga::expectedEigenvectors<D>()[i]); - if (!sameSign(act[0], exp[0])) exp = -exp; - if (!vectorEpsilonEqual(act, exp, epsilon)) - return failReport(__LINE__); - } - - return 0; -} - -// A simple small smoke test: -// - a uniformly sampled block -// - reconstruct main axes -// - check order of eigenvalues equals order of extends of block in direction of main axes -int smokeTest() -{ - using glm::vec3; - using glm::mat3; - std::vector<vec3> pts; - pts.reserve(11 * 15 * 7); - - for(int x = -5; x <= 5; ++x) - for(int y = -7; y <= 7; ++y) - for(int z = -3; z <= 3; ++z) - pts.push_back(vec3(x, y, z)); - - mat3 covar = glm::computeCovarianceMatrix(pts.data(), pts.size()); - mat3 eVec; - vec3 eVal; - int eCnt = glm::findEigenvaluesSymReal(covar, eVal, eVec); - if(eCnt != 3) - return failReport(__LINE__); - - // sort eVec by decending eVal - if(eVal[0] < eVal[1]) - { - std::swap(eVal[0], eVal[1]); - std::swap(eVec[0], eVec[1]); - } - if(eVal[0] < eVal[2]) - { - std::swap(eVal[0], eVal[2]); - std::swap(eVec[0], eVec[2]); - } - if(eVal[1] < eVal[2]) - { - std::swap(eVal[1], eVal[2]); - std::swap(eVec[1], eVec[2]); - } - - if(!vectorEpsilonEqual(glm::abs(eVec[0]), vec3(0, 1, 0), myEpsilon<float>())) - return failReport(__LINE__); - if(!vectorEpsilonEqual(glm::abs(eVec[1]), vec3(1, 0, 0), myEpsilon<float>())) - return failReport(__LINE__); - if(!vectorEpsilonEqual(glm::abs(eVec[2]), vec3(0, 0, 1), myEpsilon<float>())) - return failReport(__LINE__); - - return 0; -} - -#if GLM_HAS_CXX11_STL == 1 -int rndTest(unsigned int randomEngineSeed) -{ - std::default_random_engine rndEng(randomEngineSeed); - std::normal_distribution<double> normalDist; - - // construct orthonormal system - glm::dvec3 x(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); - double l = glm::length(x); - while(l < myEpsilon<double>()) - x = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); - x = glm::normalize(x); - glm::dvec3 y(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); - l = glm::length(y); - while(l < myEpsilon<double>()) - y = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); - while(glm::abs(glm::dot(x, y)) < myEpsilon<double>()) - { - y = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); - while(l < myEpsilon<double>()) - y = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); - } - y = glm::normalize(y); - glm::dvec3 z = glm::normalize(glm::cross(x, y)); - y = glm::normalize(glm::cross(z, x)); - - // generate input point data - std::vector<glm::dvec3> ptData; - static const int pattern[] = { - 8, 0, 0, - 4, 1, 2, - 0, 2, 0, - 0, 0, 4 - }; - glm::dvec3 offset(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); - for(int p = 0; p < 4; ++p) - for(int xs = 1; xs >= -1; xs -= 2) - for(int ys = 1; ys >= -1; ys -= 2) - for(int zs = 1; zs >= -1; zs -= 2) - ptData.push_back( - offset - + x * static_cast<double>(pattern[p * 3 + 0] * xs) - + y * static_cast<double>(pattern[p * 3 + 1] * ys) - + z * static_cast<double>(pattern[p * 3 + 2] * zs)); - - // perform PCA: - glm::dvec3 center = computeCenter(ptData); - glm::dmat3 covarMat = glm::computeCovarianceMatrix(ptData.data(), ptData.size(), center); - glm::dvec3 evals; - glm::dmat3 evecs; - int evcnt = glm::findEigenvaluesSymReal(covarMat, evals, evecs); - if(evcnt != 3) - return failReport(__LINE__); - glm::sortEigenvalues(evals, evecs); - - if (!sameSign(evecs[0][0], x[0])) evecs[0] = -evecs[0]; - if(!vectorEpsilonEqual(x, evecs[0], myEpsilon<double>())) - return failReport(__LINE__); - if (!sameSign(evecs[2][0], y[0])) evecs[2] = -evecs[2]; - if (!vectorEpsilonEqual(y, evecs[2], myEpsilon<double>())) - return failReport(__LINE__); - if (!sameSign(evecs[1][0], z[0])) evecs[1] = -evecs[1]; - if (!vectorEpsilonEqual(z, evecs[1], myEpsilon<double>())) - return failReport(__LINE__); - - return 0; -} -#endif // GLM_HAS_CXX11_STL == 1 - -int main() -{ - int error(0); - - // A small smoke test to fail early with most problems - if(smokeTest()) - return failReport(__LINE__); - - // test sorting utility. - if(testEigenvalueSort<2, float, glm::defaultp>() != 0) - error = failReport(__LINE__); - if(testEigenvalueSort<2, double, glm::defaultp>() != 0) - error = failReport(__LINE__); - if(testEigenvalueSort<3, float, glm::defaultp>() != 0) - error = failReport(__LINE__); - if(testEigenvalueSort<3, double, glm::defaultp>() != 0) - error = failReport(__LINE__); - if(testEigenvalueSort<4, float, glm::defaultp>() != 0) - error = failReport(__LINE__); - if(testEigenvalueSort<4, double, glm::defaultp>() != 0) - error = failReport(__LINE__); - if (error != 0) - return error; - - // Note: the random engine uses a fixed seed to create consistent and reproducible test data - // test covariance matrix computation from different data sources - if(testCovar<2, float, glm::defaultp>(100, 12345) != 0) - error = failReport(__LINE__); - if(testCovar<2, double, glm::defaultp>(100, 42) != 0) - error = failReport(__LINE__); - if(testCovar<3, float, glm::defaultp>(100, 2021) != 0) - error = failReport(__LINE__); - if(testCovar<3, double, glm::defaultp>(100, 815) != 0) - error = failReport(__LINE__); - if(testCovar<4, float, glm::defaultp>(100, 3141) != 0) - error = failReport(__LINE__); - if(testCovar<4, double, glm::defaultp>(100, 174) != 0) - error = failReport(__LINE__); - if (error != 0) - return error; - - // test PCA eigen vector reconstruction - // Expected epsilon precision evaluated separately: - // https://github.com/sgrottel/exp-pca-precision - if(testEigenvectors<2, float, glm::defaultp>(0.002f) != 0) - error = failReport(__LINE__); - if(testEigenvectors<2, double, glm::defaultp>(0.00000000001) != 0) - error = failReport(__LINE__); - if(testEigenvectors<3, float, glm::defaultp>(0.00001f) != 0) - error = failReport(__LINE__); - if(testEigenvectors<3, double, glm::defaultp>(0.0000000001) != 0) - error = failReport(__LINE__); - if(testEigenvectors<4, float, glm::defaultp>(0.0001f) != 0) - error = failReport(__LINE__); - if(testEigenvectors<4, double, glm::defaultp>(0.0000001) != 0) - error = failReport(__LINE__); - if(error != 0) - return error; - - // Final tests with randomized data -#if GLM_HAS_CXX11_STL == 1 - if(rndTest(12345) != 0) - error = failReport(__LINE__); - if(rndTest(42) != 0) - error = failReport(__LINE__); - if (error != 0) - return error; -#endif // GLM_HAS_CXX11_STL == 1 - - return error; -} |