diff options
Diffstat (limited to '3rdparty/imgui-node-editor/imgui_bezier_math.inl')
-rw-r--r-- | 3rdparty/imgui-node-editor/imgui_bezier_math.inl | 670 |
1 files changed, 670 insertions, 0 deletions
diff --git a/3rdparty/imgui-node-editor/imgui_bezier_math.inl b/3rdparty/imgui-node-editor/imgui_bezier_math.inl new file mode 100644 index 0000000..c2c7c43 --- /dev/null +++ b/3rdparty/imgui-node-editor/imgui_bezier_math.inl @@ -0,0 +1,670 @@ +//------------------------------------------------------------------------------ +// LICENSE +// This software is dual-licensed to the public domain and under the following +// license: you are granted a perpetual, irrevocable license to copy, modify, +// publish, and distribute this file as you see fit. +// +// CREDITS +// Written by Michal Cichon +//------------------------------------------------------------------------------ +# ifndef __IMGUI_BEZIER_MATH_INL__ +# define __IMGUI_BEZIER_MATH_INL__ +# pragma once + + +//------------------------------------------------------------------------------ +# include "imgui_bezier_math.h" +# include <map> // used in ImCubicBezierFixedStep + + +//------------------------------------------------------------------------------ +template <typename T> +inline T ImLinearBezier(const T& p0, const T& p1, float t) +{ + return p0 + t * (p1 - p0); +} + +template <typename T> +inline T ImLinearBezierDt(const T& p0, const T& p1, float t) +{ + IM_UNUSED(t); + + return p1 - p0; +} + +template <typename T> +inline T ImQuadraticBezier(const T& p0, const T& p1, const T& p2, float t) +{ + const auto a = 1 - t; + + return a * a * p0 + 2 * t * a * p1 + t * t * p2; +} + +template <typename T> +inline T ImQuadraticBezierDt(const T& p0, const T& p1, const T& p2, float t) +{ + return 2 * (1 - t) * (p1 - p0) + 2 * t * (p2 - p1); +} + +template <typename T> +inline T ImCubicBezier(const T& p0, const T& p1, const T& p2, const T& p3, float t) +{ + const auto a = 1 - t; + const auto b = a * a * a; + const auto c = t * t * t; + + return b * p0 + 3 * t * a * a * p1 + 3 * t * t * a * p2 + c * p3; +} + +template <typename T> +inline T ImCubicBezierDt(const T& p0, const T& p1, const T& p2, const T& p3, float t) +{ + const auto a = 1 - t; + const auto b = a * a; + const auto c = t * t; + const auto d = 2 * t * a; + + return -3 * p0 * b + 3 * p1 * (b - d) + 3 * p2 * (d - c) + 3 * p3 * c; +} + +template <typename T> +inline T ImCubicBezierSample(const T& p0, const T& p1, const T& p2, const T& p3, float t) +{ + const auto cp0_zero = ImLengthSqr(p1 - p0) < 1e-5f; + const auto cp1_zero = ImLengthSqr(p3 - p2) < 1e-5f; + + if (cp0_zero && cp1_zero) + return ImLinearBezier(p0, p3, t); + else if (cp0_zero) + return ImQuadraticBezier(p0, p2, p3, t); + else if (cp1_zero) + return ImQuadraticBezier(p0, p1, p3, t); + else + return ImCubicBezier(p0, p1, p2, p3, t); +} + +template <typename T> +inline T ImCubicBezierSample(const ImCubicBezierPointsT<T>& curve, float t) +{ + return ImCubicBezierSample(curve.P0, curve.P1, curve.P2, curve.P3, t); +} + +template <typename T> +inline T ImCubicBezierTangent(const T& p0, const T& p1, const T& p2, const T& p3, float t) +{ + const auto cp0_zero = ImLengthSqr(p1 - p0) < 1e-5f; + const auto cp1_zero = ImLengthSqr(p3 - p2) < 1e-5f; + + if (cp0_zero && cp1_zero) + return ImLinearBezierDt(p0, p3, t); + else if (cp0_zero) + return ImQuadraticBezierDt(p0, p2, p3, t); + else if (cp1_zero) + return ImQuadraticBezierDt(p0, p1, p3, t); + else + return ImCubicBezierDt(p0, p1, p2, p3, t); +} + +template <typename T> +inline T ImCubicBezierTangent(const ImCubicBezierPointsT<T>& curve, float t) +{ + return ImCubicBezierTangent(curve.P0, curve.P1, curve.P2, curve.P3, t); +} + +template <typename T> +inline float ImCubicBezierLength(const T& p0, const T& p1, const T& p2, const T& p3) +{ + // Legendre-Gauss abscissae with n=24 (x_i values, defined at i=n as the roots of the nth order Legendre polynomial Pn(x)) + static const float t_values[] = + { + -0.0640568928626056260850430826247450385909f, + 0.0640568928626056260850430826247450385909f, + -0.1911188674736163091586398207570696318404f, + 0.1911188674736163091586398207570696318404f, + -0.3150426796961633743867932913198102407864f, + 0.3150426796961633743867932913198102407864f, + -0.4337935076260451384870842319133497124524f, + 0.4337935076260451384870842319133497124524f, + -0.5454214713888395356583756172183723700107f, + 0.5454214713888395356583756172183723700107f, + -0.6480936519369755692524957869107476266696f, + 0.6480936519369755692524957869107476266696f, + -0.7401241915785543642438281030999784255232f, + 0.7401241915785543642438281030999784255232f, + -0.8200019859739029219539498726697452080761f, + 0.8200019859739029219539498726697452080761f, + -0.8864155270044010342131543419821967550873f, + 0.8864155270044010342131543419821967550873f, + -0.9382745520027327585236490017087214496548f, + 0.9382745520027327585236490017087214496548f, + -0.9747285559713094981983919930081690617411f, + 0.9747285559713094981983919930081690617411f, + -0.9951872199970213601799974097007368118745f, + 0.9951872199970213601799974097007368118745f + }; + + // Legendre-Gauss weights with n=24 (w_i values, defined by a function linked to in the Bezier primer article) + static const float c_values[] = + { + 0.1279381953467521569740561652246953718517f, + 0.1279381953467521569740561652246953718517f, + 0.1258374563468282961213753825111836887264f, + 0.1258374563468282961213753825111836887264f, + 0.1216704729278033912044631534762624256070f, + 0.1216704729278033912044631534762624256070f, + 0.1155056680537256013533444839067835598622f, + 0.1155056680537256013533444839067835598622f, + 0.1074442701159656347825773424466062227946f, + 0.1074442701159656347825773424466062227946f, + 0.0976186521041138882698806644642471544279f, + 0.0976186521041138882698806644642471544279f, + 0.0861901615319532759171852029837426671850f, + 0.0861901615319532759171852029837426671850f, + 0.0733464814110803057340336152531165181193f, + 0.0733464814110803057340336152531165181193f, + 0.0592985849154367807463677585001085845412f, + 0.0592985849154367807463677585001085845412f, + 0.0442774388174198061686027482113382288593f, + 0.0442774388174198061686027482113382288593f, + 0.0285313886289336631813078159518782864491f, + 0.0285313886289336631813078159518782864491f, + 0.0123412297999871995468056670700372915759f, + 0.0123412297999871995468056670700372915759f + }; + + static_assert(sizeof(t_values) / sizeof(*t_values) == sizeof(c_values) / sizeof(*c_values), ""); + + auto arc = [p0, p1, p2, p3](float t) + { + const auto p = ImCubicBezierDt(p0, p1, p2, p3, t); + const auto l = ImLength(p); + return l; + }; + + const auto z = 0.5f; + const auto n = sizeof(t_values) / sizeof(*t_values); + + auto accumulator = 0.0f; + for (size_t i = 0; i < n; ++i) + { + const auto t = z * t_values[i] + z; + accumulator += c_values[i] * arc(t); + } + + return z * accumulator; +} + +template <typename T> +inline float ImCubicBezierLength(const ImCubicBezierPointsT<T>& curve) +{ + return ImCubicBezierLength(curve.P0, curve.P1, curve.P2, curve.P3); +} + +template <typename T> +inline ImCubicBezierSplitResultT<T> ImCubicBezierSplit(const T& p0, const T& p1, const T& p2, const T& p3, float t) +{ + const auto z1 = t; + const auto z2 = z1 * z1; + const auto z3 = z1 * z1 * z1; + const auto s1 = z1 - 1; + const auto s2 = s1 * s1; + const auto s3 = s1 * s1 * s1; + + return ImCubicBezierSplitResultT<T> + { + ImCubicBezierPointsT<T> + { + p0, + z1 * p1 - s1 * p0, + z2 * p2 - 2 * z1 * s1 * p1 + s2 * p0, + z3 * p3 - 3 * z2 * s1 * p2 + 3 * z1 * s2 * p1 - s3 * p0 + }, + ImCubicBezierPointsT<T> + { + z3 * p0 - 3 * z2 * s1 * p1 + 3 * z1 * s2 * p2 - s3 * p3, + z2 * p1 - 2 * z1 * s1 * p2 + s2 * p3, + z1 * p2 - s1 * p3, + p3, + } + }; +} + +template <typename T> +inline ImCubicBezierSplitResultT<T> ImCubicBezierSplit(const ImCubicBezierPointsT<T>& curve, float t) +{ + return ImCubicBezierSplit(curve.P0, curve.P1, curve.P2, curve.P3, t); +} + +inline ImRect ImCubicBezierBoundingRect(const ImVec2& p0, const ImVec2& p1, const ImVec2& p2, const ImVec2& p3) +{ + auto a = 3 * p3 - 9 * p2 + 9 * p1 - 3 * p0; + auto b = 6 * p0 - 12 * p1 + 6 * p2; + auto c = 3 * p1 - 3 * p0; + auto delta_squared = ImMul(b, b) - 4 * ImMul(a, c); + + auto tl = ImMin(p0, p3); + auto rb = ImMax(p0, p3); + +# define IM_VEC2_INDEX(v, i) *(&v.x + i) + + for (int i = 0; i < 2; ++i) + { + if (IM_VEC2_INDEX(delta_squared, i) >= 0) + { + auto delta = ImSqrt(IM_VEC2_INDEX(delta_squared, i)); + + auto t0 = (-IM_VEC2_INDEX(b, i) + delta) / (2 * IM_VEC2_INDEX(a, i)); + if (t0 > 0 && t0 < 1) + { + auto p = ImCubicBezier(IM_VEC2_INDEX(p0, i), IM_VEC2_INDEX(p1, i), IM_VEC2_INDEX(p2, i), IM_VEC2_INDEX(p3, i), t0); + IM_VEC2_INDEX(tl, i) = ImMin(IM_VEC2_INDEX(tl, i), p); + IM_VEC2_INDEX(rb, i) = ImMax(IM_VEC2_INDEX(rb, i), p); + } + + auto t1 = (-IM_VEC2_INDEX(b, i) - delta) / (2 * IM_VEC2_INDEX(a, i)); + if (t1 > 0 && t1 < 1) + { + auto p = ImCubicBezier(IM_VEC2_INDEX(p0, i), IM_VEC2_INDEX(p1, i), IM_VEC2_INDEX(p2, i), IM_VEC2_INDEX(p3, i), t1); + IM_VEC2_INDEX(tl, i) = ImMin(IM_VEC2_INDEX(tl, i), p); + IM_VEC2_INDEX(rb, i) = ImMax(IM_VEC2_INDEX(rb, i), p); + } + } + } + +# undef IM_VEC2_INDEX + + return ImRect(tl, rb); +} + +inline ImRect ImCubicBezierBoundingRect(const ImCubicBezierPoints& curve) +{ + return ImCubicBezierBoundingRect(curve.P0, curve.P1, curve.P2, curve.P3); +} + +inline ImProjectResult ImProjectOnCubicBezier(const ImVec2& point, const ImVec2& p0, const ImVec2& p1, const ImVec2& p2, const ImVec2& p3, const int subdivisions) +{ + // http://pomax.github.io/bezierinfo/#projections + + const float epsilon = 1e-5f; + const float fixed_step = 1.0f / static_cast<float>(subdivisions - 1); + + ImProjectResult result; + result.Point = point; + result.Time = 0.0f; + result.Distance = FLT_MAX; + + // Step 1: Coarse check + for (int i = 0; i < subdivisions; ++i) + { + auto t = i * fixed_step; + auto p = ImCubicBezier(p0, p1, p2, p3, t); + auto s = point - p; + auto d = ImDot(s, s); + + if (d < result.Distance) + { + result.Point = p; + result.Time = t; + result.Distance = d; + } + } + + if (result.Time == 0.0f || ImFabs(result.Time - 1.0f) <= epsilon) + { + result.Distance = ImSqrt(result.Distance); + return result; + } + + // Step 2: Fine check + auto left = result.Time - fixed_step; + auto right = result.Time + fixed_step; + auto step = fixed_step * 0.1f; + + for (auto t = left; t < right + step; t += step) + { + auto p = ImCubicBezier(p0, p1, p2, p3, t); + auto s = point - p; + auto d = ImDot(s, s); + + if (d < result.Distance) + { + result.Point = p; + result.Time = t; + result.Distance = d; + } + } + + result.Distance = ImSqrt(result.Distance); + + return result; +} + +inline ImProjectResult ImProjectOnCubicBezier(const ImVec2& p, const ImCubicBezierPoints& curve, const int subdivisions) +{ + return ImProjectOnCubicBezier(p, curve.P0, curve.P1, curve.P2, curve.P3, subdivisions); +} + +inline ImCubicBezierIntersectResult ImCubicBezierLineIntersect(const ImVec2& p0, const ImVec2& p1, const ImVec2& p2, const ImVec2& p3, const ImVec2& a0, const ImVec2& a1) +{ + auto cubic_roots = [](float a, float b, float c, float d, float* roots) -> int + { + int count = 0; + + auto sign = [](float x) -> float { return x < 0 ? -1.0f : 1.0f; }; + + auto A = b / a; + auto B = c / a; + auto C = d / a; + + auto Q = (3 * B - ImPow(A, 2)) / 9; + auto R = (9 * A * B - 27 * C - 2 * ImPow(A, 3)) / 54; + auto D = ImPow(Q, 3) + ImPow(R, 2); // polynomial discriminant + + if (D >= 0) // complex or duplicate roots + { + auto S = sign(R + ImSqrt(D)) * ImPow(ImFabs(R + ImSqrt(D)), (1.0f / 3.0f)); + auto T = sign(R - ImSqrt(D)) * ImPow(ImFabs(R - ImSqrt(D)), (1.0f / 3.0f)); + + roots[0] = -A / 3 + (S + T); // real root + roots[1] = -A / 3 - (S + T) / 2; // real part of complex root + roots[2] = -A / 3 - (S + T) / 2; // real part of complex root + auto Im = ImFabs(ImSqrt(3) * (S - T) / 2); // complex part of root pair + + // discard complex roots + if (Im != 0) + count = 1; + else + count = 3; + } + else // distinct real roots + { + auto th = ImAcos(R / ImSqrt(-ImPow(Q, 3))); + + roots[0] = 2 * ImSqrt(-Q) * ImCos(th / 3) - A / 3; + roots[1] = 2 * ImSqrt(-Q) * ImCos((th + 2 * IM_PI) / 3) - A / 3; + roots[2] = 2 * ImSqrt(-Q) * ImCos((th + 4 * IM_PI) / 3) - A / 3; + + count = 3; + } + + return count; + }; + + // https://github.com/kaishiqi/Geometric-Bezier/blob/master/GeometricBezier/src/kaishiqi/geometric/intersection/Intersection.as + // + // Start with Bezier using Bernstein polynomials for weighting functions: + // (1-t^3)P0 + 3t(1-t)^2P1 + 3t^2(1-t)P2 + t^3P3 + // + // Expand and collect terms to form linear combinations of original Bezier + // controls. This ends up with a vector cubic in t: + // (-P0+3P1-3P2+P3)t^3 + (3P0-6P1+3P2)t^2 + (-3P0+3P1)t + P0 + // /\ /\ /\ /\ + // || || || || + // c3 c2 c1 c0 + + // Calculate the coefficients + auto c3 = -p0 + 3 * p1 - 3 * p2 + p3; + auto c2 = 3 * p0 - 6 * p1 + 3 * p2; + auto c1 = -3 * p0 + 3 * p1; + auto c0 = p0; + + // Convert line to normal form: ax + by + c = 0 + auto a = a1.y - a0.y; + auto b = a0.x - a1.x; + auto c = a0.x * (a0.y - a1.y) + a0.y * (a1.x - a0.x); + + // Rotate each cubic coefficient using line for new coordinate system? + // Find roots of rotated cubic + float roots[3]; + auto rootCount = cubic_roots( + a * c3.x + b * c3.y, + a * c2.x + b * c2.y, + a * c1.x + b * c1.y, + a * c0.x + b * c0.y + c, + roots); + + // Any roots in closed interval [0,1] are intersections on Bezier, but + // might not be on the line segment. + // Find intersections and calculate point coordinates + + auto min = ImMin(a0, a1); + auto max = ImMax(a0, a1); + + ImCubicBezierIntersectResult result; + auto points = result.Points; + + for (int i = 0; i < rootCount; ++i) + { + auto root = roots[i]; + + if (0 <= root && root <= 1) + { + // We're within the Bezier curve + // Find point on Bezier + auto p = ImCubicBezier(p0, p1, p2, p3, root); + + // See if point is on line segment + // Had to make special cases for vertical and horizontal lines due + // to slight errors in calculation of p00 + if (a0.x == a1.x) + { + if (min.y <= p.y && p.y <= max.y) + *points++ = p; + } + else if (a0.y == a1.y) + { + if (min.x <= p.x && p.x <= max.x) + *points++ = p; + } + else if (p.x >= min.x && p.y >= min.y && p.x <= max.x && p.y <= max.y) + { + *points++ = p; + } + } + } + + result.Count = static_cast<int>(points - result.Points); + + return result; +} + +inline ImCubicBezierIntersectResult ImCubicBezierLineIntersect(const ImCubicBezierPoints& curve, const ImLine& line) +{ + return ImCubicBezierLineIntersect(curve.P0, curve.P1, curve.P2, curve.P3, line.A, line.B); +} + +inline void ImCubicBezierSubdivide(ImCubicBezierSubdivideCallback callback, void* user_pointer, const ImVec2& p0, const ImVec2& p1, const ImVec2& p2, const ImVec2& p3, float tess_tol, ImCubicBezierSubdivideFlags flags) +{ + return ImCubicBezierSubdivide(callback, user_pointer, ImCubicBezierPoints{ p0, p1, p2, p3 }, tess_tol, flags); +} + +inline void ImCubicBezierSubdivide(ImCubicBezierSubdivideCallback callback, void* user_pointer, const ImCubicBezierPoints& curve, float tess_tol, ImCubicBezierSubdivideFlags flags) +{ + struct Tesselator + { + ImCubicBezierSubdivideCallback Callback; + void* UserPointer; + float TesselationTollerance; + ImCubicBezierSubdivideFlags Flags; + + void Commit(const ImVec2& p, const ImVec2& t) + { + ImCubicBezierSubdivideSample sample; + sample.Point = p; + sample.Tangent = t; + Callback(sample, UserPointer); + } + + void Subdivide(const ImCubicBezierPoints& curve, int level = 0) + { + float dx = curve.P3.x - curve.P0.x; + float dy = curve.P3.y - curve.P0.y; + float d2 = ((curve.P1.x - curve.P3.x) * dy - (curve.P1.y - curve.P3.y) * dx); + float d3 = ((curve.P2.x - curve.P3.x) * dy - (curve.P2.y - curve.P3.y) * dx); + d2 = (d2 >= 0) ? d2 : -d2; + d3 = (d3 >= 0) ? d3 : -d3; + if ((d2 + d3) * (d2 + d3) < TesselationTollerance * (dx * dx + dy * dy)) + { + Commit(curve.P3, ImCubicBezierTangent(curve, 1.0f)); + } + else if (level < 10) + { + const auto p12 = (curve.P0 + curve.P1) * 0.5f; + const auto p23 = (curve.P1 + curve.P2) * 0.5f; + const auto p34 = (curve.P2 + curve.P3) * 0.5f; + const auto p123 = (p12 + p23) * 0.5f; + const auto p234 = (p23 + p34) * 0.5f; + const auto p1234 = (p123 + p234) * 0.5f; + + Subdivide(ImCubicBezierPoints { curve.P0, p12, p123, p1234 }, level + 1); + Subdivide(ImCubicBezierPoints { p1234, p234, p34, curve.P3 }, level + 1); + } + } + }; + + if (tess_tol < 0) + tess_tol = 1.118f; // sqrtf(1.25f) + + Tesselator tesselator; + tesselator.Callback = callback; + tesselator.UserPointer = user_pointer; + tesselator.TesselationTollerance = tess_tol * tess_tol; + tesselator.Flags = flags; + + if (!(tesselator.Flags & ImCubicBezierSubdivide_SkipFirst)) + tesselator.Commit(curve.P0, ImCubicBezierTangent(curve, 0.0f)); + + tesselator.Subdivide(curve, 0); +} + +template <typename F> inline void ImCubicBezierSubdivide(F& callback, const ImVec2& p0, const ImVec2& p1, const ImVec2& p2, const ImVec2& p3, float tess_tol, ImCubicBezierSubdivideFlags flags) +{ + auto handler = [](const ImCubicBezierSubdivideSample& p, void* user_pointer) + { + auto& callback = *reinterpret_cast<F*>(user_pointer); + callback(p); + }; + + ImCubicBezierSubdivide(handler, &callback, ImCubicBezierPoints{ p0, p1, p2, p3 }, tess_tol, flags); +} + +template <typename F> inline void ImCubicBezierSubdivide(F& callback, const ImCubicBezierPoints& curve, float tess_tol, ImCubicBezierSubdivideFlags flags) +{ + auto handler = [](const ImCubicBezierSubdivideSample& p, void* user_pointer) + { + auto& callback = *reinterpret_cast<F*>(user_pointer); + callback(p); + }; + + ImCubicBezierSubdivide(handler, &callback, curve, tess_tol, flags); +} + +inline void ImCubicBezierFixedStep(ImCubicBezierFixedStepCallback callback, void* user_pointer, const ImVec2& p0, const ImVec2& p1, const ImVec2& p2, const ImVec2& p3, float step, bool overshoot, float max_value_error, float max_t_error) +{ + if (step <= 0.0f || !callback || max_value_error <= 0 || max_t_error <= 0) + return; + + ImCubicBezierFixedStepSample sample; + sample.T = 0.0f; + sample.Length = 0.0f; + sample.Point = p0; + sample.BreakSearch = false; + + callback(sample, user_pointer); + if (sample.BreakSearch) + return; + + const auto total_length = ImCubicBezierLength(p0, p1, p2, p3); + const auto point_count = static_cast<int>(total_length / step) + (overshoot ? 2 : 1); + const auto t_min = 0.0f; + const auto t_max = step * point_count / total_length; + const auto t_0 = (t_min + t_max) * 0.5f; + + // #todo: replace map with ImVector + binary search + std::map<float, float> cache; + for (int point_index = 1; point_index < point_count; ++point_index) + { + const auto targetLength = point_index * step; + + float t_start = t_min; + float t_end = t_max; + float t = t_0; + + float t_best = t; + float error_best = total_length; + + while (true) + { + auto cacheIt = cache.find(t); + if (cacheIt == cache.end()) + { + const auto front = ImCubicBezierSplit(p0, p1, p2, p3, t).Left; + const auto split_length = ImCubicBezierLength(front); + + cacheIt = cache.emplace(t, split_length).first; + } + + const auto length = cacheIt->second; + const auto error = targetLength - length; + + if (error < error_best) + { + error_best = error; + t_best = t; + } + + if (ImFabs(error) <= max_value_error || ImFabs(t_start - t_end) <= max_t_error) + { + sample.T = t; + sample.Length = length; + sample.Point = ImCubicBezier(p0, p1, p2, p3, t); + + callback(sample, user_pointer); + if (sample.BreakSearch) + return; + + break; + } + else if (error < 0.0f) + t_end = t; + else // if (error > 0.0f) + t_start = t; + + t = (t_start + t_end) * 0.5f; + } + } +} + +inline void ImCubicBezierFixedStep(ImCubicBezierFixedStepCallback callback, void* user_pointer, const ImCubicBezierPoints& curve, float step, bool overshoot, float max_value_error, float max_t_error) +{ + ImCubicBezierFixedStep(callback, user_pointer, curve.P0, curve.P1, curve.P2, curve.P3, step, overshoot, max_value_error, max_t_error); +} + +// F has signature void(const ImCubicBezierFixedStepSample& p) +template <typename F> +inline void ImCubicBezierFixedStep(F& callback, const ImVec2& p0, const ImVec2& p1, const ImVec2& p2, const ImVec2& p3, float step, bool overshoot, float max_value_error, float max_t_error) +{ + auto handler = [](ImCubicBezierFixedStepSample& sample, void* user_pointer) + { + auto& callback = *reinterpret_cast<F*>(user_pointer); + callback(sample); + }; + + ImCubicBezierFixedStep(handler, &callback, p0, p1, p2, p3, step, overshoot, max_value_error, max_t_error); +} + +template <typename F> +inline void ImCubicBezierFixedStep(F& callback, const ImCubicBezierPoints& curve, float step, bool overshoot, float max_value_error, float max_t_error) +{ + auto handler = [](ImCubicBezierFixedStepSample& sample, void* user_pointer) + { + auto& callback = *reinterpret_cast<F*>(user_pointer); + callback(sample); + }; + + ImCubicBezierFixedStep(handler, &callback, curve.P0, curve.P1, curve.P2, curve.P3, step, overshoot, max_value_error, max_t_error); +} + + +//------------------------------------------------------------------------------ +# endif // __IMGUI_BEZIER_MATH_INL__ |