From 8fc3192da5ae3ac24511ad32088d669c799b6ddb Mon Sep 17 00:00:00 2001 From: rtk0c Date: Wed, 25 May 2022 22:30:59 -0700 Subject: Changeset: 39 Move more things to source-common/ --- source/SmallVector.hpp | 1332 ------------------------------------------------ 1 file changed, 1332 deletions(-) delete mode 100644 source/SmallVector.hpp (limited to 'source/SmallVector.hpp') diff --git a/source/SmallVector.hpp b/source/SmallVector.hpp deleted file mode 100644 index e33a25d..0000000 --- a/source/SmallVector.hpp +++ /dev/null @@ -1,1332 +0,0 @@ -// Obtained from https://github.com/llvm/llvm-project/blob/main/llvm/include/llvm/ADT/SmallVector.h -// commit 4b82bb6d82f65f98f23d0e4c2cd5297dc162864c -// adapted in code style and utilities to fix this project - -//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -/// -/// \file -/// This file defines the SmallVector class. -/// -//===----------------------------------------------------------------------===// - -#pragma once - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#ifdef _MSC_VER -# pragma warning(push) -# pragma warning(disable : 4267) // The compiler detected a conversion from size_t to a smaller type. -#endif - -#if __has_builtin(__builtin_expect) || defined(__GNUC__) -# define LLVM_LIKELY(EXPR) __builtin_expect((bool)(EXPR), true) -# define LLVM_UNLIKELY(EXPR) __builtin_expect((bool)(EXPR), false) -#else -# define LLVM_LIKELY(EXPR) (EXPR) -# define LLVM_UNLIKELY(EXPR) (EXPR) -#endif - -template -class iterator_range; - -/// This is all the stuff common to all SmallVectors. -/// -/// The template parameter specifies the type which should be used to hold the -/// Size and Capacity of the SmallVector, so it can be adjusted. -/// Using 32 bit size is desirable to shrink the size of the SmallVector. -/// Using 64 bit size is desirable for cases like SmallVector, where a -/// 32 bit size would limit the vector to ~4GB. SmallVectors are used for -/// buffering bitcode output - which can exceed 4GB. -template -class SmallVectorBase { -protected: - void* BeginX; - Size_T Size = 0, Capacity; - - /// The maximum value of the Size_T used. - static constexpr size_t SizeTypeMax() { - return std::numeric_limits::max(); - } - - SmallVectorBase() = delete; - SmallVectorBase(void* FirstEl, size_t TotalCapacity) - : BeginX(FirstEl), Capacity(TotalCapacity) {} - - /// This is a helper for \a grow() that's out of line to reduce code - /// duplication. This function will report a fatal error if it can't grow at - /// least to \p MinSize. - void* mallocForGrow(size_t MinSize, size_t TSize, size_t& NewCapacity); - - /// This is an implementation of the grow() method which only works - /// on POD-like data types and is out of line to reduce code duplication. - /// This function will report a fatal error if it cannot increase capacity. - void grow_pod(void* FirstEl, size_t MinSize, size_t TSize); - -public: - size_t size() const { return Size; } - size_t capacity() const { return Capacity; } - - [[nodiscard]] bool empty() const { return !Size; } - -protected: - /// Set the array size to \p N, which the current array must have enough - /// capacity for. - /// - /// This does not construct or destroy any elements in the vector. - void set_size(size_t N) { - assert(N <= capacity()); - Size = N; - } -}; - -template -using SmallVectorSizeType = - typename std::conditional= 8, uint64_t, uint32_t>::type; - -/// Figure out the offset of the first element. -template -struct SmallVectorAlignmentAndSize { - alignas(SmallVectorBase>) char Base[sizeof( - SmallVectorBase>)]; - alignas(T) char FirstEl[sizeof(T)]; -}; - -/// This is the part of SmallVectorTemplateBase which does not depend on whether -/// the type T is a POD. The extra dummy template argument is used by ArrayRef -/// to avoid unnecessarily requiring T to be complete. -template -class SmallVectorTemplateCommon - : public SmallVectorBase> { - using Base = SmallVectorBase>; - - /// Find the address of the first element. For this pointer math to be valid - /// with small-size of 0 for T with lots of alignment, it's important that - /// SmallVectorStorage is properly-aligned even for small-size of 0. - void* getFirstEl() const { - return const_cast(reinterpret_cast( - reinterpret_cast(this) + - offsetof(SmallVectorAlignmentAndSize, FirstEl))); - } - // Space after 'FirstEl' is clobbered, do not add any instance vars after it. - -protected: - SmallVectorTemplateCommon(size_t Size) - : Base(getFirstEl(), Size) {} - - void grow_pod(size_t MinSize, size_t TSize) { - Base::grow_pod(getFirstEl(), MinSize, TSize); - } - - /// Return true if this is a smallvector which has not had dynamic - /// memory allocated for it. - bool isSmall() const { return this->BeginX == getFirstEl(); } - - /// Put this vector in a state of being small. - void resetToSmall() { - this->BeginX = getFirstEl(); - this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect. - } - - /// Return true if V is an internal reference to the given range. - bool isReferenceToRange(const void* V, const void* First, const void* Last) const { - // Use std::less to avoid UB. - std::less<> LessThan; - return !LessThan(V, First) && LessThan(V, Last); - } - - /// Return true if V is an internal reference to this vector. - bool isReferenceToStorage(const void* V) const { - return isReferenceToRange(V, this->begin(), this->end()); - } - - /// Return true if First and Last form a valid (possibly empty) range in this - /// vector's storage. - bool isRangeInStorage(const void* First, const void* Last) const { - // Use std::less to avoid UB. - std::less<> LessThan; - return !LessThan(First, this->begin()) && !LessThan(Last, First) && - !LessThan(this->end(), Last); - } - - /// Return true unless Elt will be invalidated by resizing the vector to - /// NewSize. - bool isSafeToReferenceAfterResize(const void* Elt, size_t NewSize) { - // Past the end. - if (LLVM_LIKELY(!isReferenceToStorage(Elt))) - return true; - - // Return false if Elt will be destroyed by shrinking. - if (NewSize <= this->size()) - return Elt < this->begin() + NewSize; - - // Return false if we need to grow. - return NewSize <= this->capacity(); - } - - /// Check whether Elt will be invalidated by resizing the vector to NewSize. - void assertSafeToReferenceAfterResize(const void* Elt, size_t NewSize) { - assert(isSafeToReferenceAfterResize(Elt, NewSize) && - "Attempting to reference an element of the vector in an operation " - "that invalidates it"); - } - - /// Check whether Elt will be invalidated by increasing the size of the - /// vector by N. - void assertSafeToAdd(const void* Elt, size_t N = 1) { - this->assertSafeToReferenceAfterResize(Elt, this->size() + N); - } - - /// Check whether any part of the range will be invalidated by clearing. - void assertSafeToReferenceAfterClear(const T* From, const T* To) { - if (From == To) - return; - this->assertSafeToReferenceAfterResize(From, 0); - this->assertSafeToReferenceAfterResize(To - 1, 0); - } - template < - class ItTy, - std::enable_if_t, T*>::value, - bool> = false> - void assertSafeToReferenceAfterClear(ItTy, ItTy) {} - - /// Check whether any part of the range will be invalidated by growing. - void assertSafeToAddRange(const T* From, const T* To) { - if (From == To) - return; - this->assertSafeToAdd(From, To - From); - this->assertSafeToAdd(To - 1, To - From); - } - template < - class ItTy, - std::enable_if_t, T*>::value, - bool> = false> - void assertSafeToAddRange(ItTy, ItTy) {} - - /// Reserve enough space to add one element, and return the updated element - /// pointer in case it was a reference to the storage. - template - static const T* reserveForParamAndGetAddressImpl(U* This, const T& Elt, size_t N) { - size_t NewSize = This->size() + N; - if (LLVM_LIKELY(NewSize <= This->capacity())) - return &Elt; - - bool ReferencesStorage = false; - int64_t Index = -1; - if (!U::TakesParamByValue) { - if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))) { - ReferencesStorage = true; - Index = &Elt - This->begin(); - } - } - This->grow(NewSize); - return ReferencesStorage ? This->begin() + Index : &Elt; - } - -public: - using size_type = size_t; - using difference_type = ptrdiff_t; - using value_type = T; - using iterator = T*; - using const_iterator = const T*; - - using const_reverse_iterator = std::reverse_iterator; - using reverse_iterator = std::reverse_iterator; - - using reference = T&; - using const_reference = const T&; - using pointer = T*; - using const_pointer = const T*; - - using Base::capacity; - using Base::empty; - using Base::size; - - // forward iterator creation methods. - iterator begin() { return (iterator)this->BeginX; } - const_iterator begin() const { return (const_iterator)this->BeginX; } - iterator end() { return begin() + size(); } - const_iterator end() const { return begin() + size(); } - - // reverse iterator creation methods. - reverse_iterator rbegin() { return reverse_iterator(end()); } - const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } - reverse_iterator rend() { return reverse_iterator(begin()); } - const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } - - size_type size_in_bytes() const { return size() * sizeof(T); } - size_type max_size() const { - return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T)); - } - - size_t capacity_in_bytes() const { return capacity() * sizeof(T); } - - /// Return a pointer to the vector's buffer, even if empty(). - pointer data() { return pointer(begin()); } - /// Return a pointer to the vector's buffer, even if empty(). - const_pointer data() const { return const_pointer(begin()); } - - reference operator[](size_type idx) { - assert(idx < size()); - return begin()[idx]; - } - const_reference operator[](size_type idx) const { - assert(idx < size()); - return begin()[idx]; - } - - reference front() { - assert(!empty()); - return begin()[0]; - } - const_reference front() const { - assert(!empty()); - return begin()[0]; - } - - reference back() { - assert(!empty()); - return end()[-1]; - } - const_reference back() const { - assert(!empty()); - return end()[-1]; - } -}; - -/// SmallVectorTemplateBase - This is where we put -/// method implementations that are designed to work with non-trivial T's. -/// -/// We approximate is_trivially_copyable with trivial move/copy construction and -/// trivial destruction. While the standard doesn't specify that you're allowed -/// copy these types with memcpy, there is no way for the type to observe this. -/// This catches the important case of std::pair, which is not -/// trivially assignable. -template ::value) && (std::is_trivially_move_constructible::value) && std::is_trivially_destructible::value> -class SmallVectorTemplateBase : public SmallVectorTemplateCommon { - friend class SmallVectorTemplateCommon; - -protected: - static constexpr bool TakesParamByValue = false; - using ValueParamT = const T&; - - SmallVectorTemplateBase(size_t Size) - : SmallVectorTemplateCommon(Size) {} - - static void destroy_range(T* S, T* E) { - while (S != E) { - --E; - E->~T(); - } - } - - /// Move the range [I, E) into the uninitialized memory starting with "Dest", - /// constructing elements as needed. - template - static void uninitialized_move(It1 I, It1 E, It2 Dest) { - std::uninitialized_copy(std::make_move_iterator(I), - std::make_move_iterator(E), - Dest); - } - - /// Copy the range [I, E) onto the uninitialized memory starting with "Dest", - /// constructing elements as needed. - template - static void uninitialized_copy(It1 I, It1 E, It2 Dest) { - std::uninitialized_copy(I, E, Dest); - } - - /// Grow the allocated memory (without initializing new elements), doubling - /// the size of the allocated memory. Guarantees space for at least one more - /// element, or MinSize more elements if specified. - void grow(size_t MinSize = 0); - - /// Create a new allocation big enough for \p MinSize and pass back its size - /// in \p NewCapacity. This is the first section of \a grow(). - T* mallocForGrow(size_t MinSize, size_t& NewCapacity) { - return static_cast( - SmallVectorBase>::mallocForGrow( - MinSize, sizeof(T), NewCapacity)); - } - - /// Move existing elements over to the new allocation \p NewElts, the middle - /// section of \a grow(). - void moveElementsForGrow(T* NewElts); - - /// Transfer ownership of the allocation, finishing up \a grow(). - void takeAllocationForGrow(T* NewElts, size_t NewCapacity); - - /// Reserve enough space to add one element, and return the updated element - /// pointer in case it was a reference to the storage. - const T* reserveForParamAndGetAddress(const T& Elt, size_t N = 1) { - return this->reserveForParamAndGetAddressImpl(this, Elt, N); - } - - /// Reserve enough space to add one element, and return the updated element - /// pointer in case it was a reference to the storage. - T* reserveForParamAndGetAddress(T& Elt, size_t N = 1) { - return const_cast( - this->reserveForParamAndGetAddressImpl(this, Elt, N)); - } - - static T&& forward_value_param(T&& V) { return std::move(V); } - static const T& forward_value_param(const T& V) { return V; } - - void growAndAssign(size_t NumElts, const T& Elt) { - // Grow manually in case Elt is an internal reference. - size_t NewCapacity; - T* NewElts = mallocForGrow(NumElts, NewCapacity); - std::uninitialized_fill_n(NewElts, NumElts, Elt); - this->destroy_range(this->begin(), this->end()); - takeAllocationForGrow(NewElts, NewCapacity); - this->set_size(NumElts); - } - - template - T& growAndEmplaceBack(ArgTypes&&... Args) { - // Grow manually in case one of Args is an internal reference. - size_t NewCapacity; - T* NewElts = mallocForGrow(0, NewCapacity); - ::new ((void*)(NewElts + this->size())) T(std::forward(Args)...); - moveElementsForGrow(NewElts); - takeAllocationForGrow(NewElts, NewCapacity); - this->set_size(this->size() + 1); - return this->back(); - } - -public: - void push_back(const T& Elt) { - const T* EltPtr = reserveForParamAndGetAddress(Elt); - ::new ((void*)this->end()) T(*EltPtr); - this->set_size(this->size() + 1); - } - - void push_back(T&& Elt) { - T* EltPtr = reserveForParamAndGetAddress(Elt); - ::new ((void*)this->end()) T(::std::move(*EltPtr)); - this->set_size(this->size() + 1); - } - - void pop_back() { - this->set_size(this->size() - 1); - this->end()->~T(); - } -}; - -// Define this out-of-line to dissuade the C++ compiler from inlining it. -template -void SmallVectorTemplateBase::grow(size_t MinSize) { - size_t NewCapacity; - T* NewElts = mallocForGrow(MinSize, NewCapacity); - moveElementsForGrow(NewElts); - takeAllocationForGrow(NewElts, NewCapacity); -} - -// Define this out-of-line to dissuade the C++ compiler from inlining it. -template -void SmallVectorTemplateBase::moveElementsForGrow( - T* NewElts) { - // Move the elements over. - this->uninitialized_move(this->begin(), this->end(), NewElts); - - // Destroy the original elements. - destroy_range(this->begin(), this->end()); -} - -// Define this out-of-line to dissuade the C++ compiler from inlining it. -template -void SmallVectorTemplateBase::takeAllocationForGrow( - T* NewElts, size_t NewCapacity) { - // If this wasn't grown from the inline copy, deallocate the old space. - if (!this->isSmall()) - free(this->begin()); - - this->BeginX = NewElts; - this->Capacity = NewCapacity; -} - -/// SmallVectorTemplateBase - This is where we put -/// method implementations that are designed to work with trivially copyable -/// T's. This allows using memcpy in place of copy/move construction and -/// skipping destruction. -template -class SmallVectorTemplateBase : public SmallVectorTemplateCommon { - friend class SmallVectorTemplateCommon; - -protected: - /// True if it's cheap enough to take parameters by value. Doing so avoids - /// overhead related to mitigations for reference invalidation. - static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void*); - - /// Either const T& or T, depending on whether it's cheap enough to take - /// parameters by value. - using ValueParamT = - typename std::conditional::type; - - SmallVectorTemplateBase(size_t Size) - : SmallVectorTemplateCommon(Size) {} - - // No need to do a destroy loop for POD's. - static void destroy_range(T*, T*) {} - - /// Move the range [I, E) onto the uninitialized memory - /// starting with "Dest", constructing elements into it as needed. - template - static void uninitialized_move(It1 I, It1 E, It2 Dest) { - // Just do a copy. - uninitialized_copy(I, E, Dest); - } - - /// Copy the range [I, E) onto the uninitialized memory - /// starting with "Dest", constructing elements into it as needed. - template - static void uninitialized_copy(It1 I, It1 E, It2 Dest) { - // Arbitrary iterator types; just use the basic implementation. - std::uninitialized_copy(I, E, Dest); - } - - /// Copy the range [I, E) onto the uninitialized memory - /// starting with "Dest", constructing elements into it as needed. - template - static void uninitialized_copy( - T1* I, T1* E, T2* Dest, std::enable_if_t::type, T2>::value>* = nullptr) { - // Use memcpy for PODs iterated by pointers (which includes SmallVector - // iterators): std::uninitialized_copy optimizes to memmove, but we can - // use memcpy here. Note that I and E are iterators and thus might be - // invalid for memcpy if they are equal. - if (I != E) - memcpy(reinterpret_cast(Dest), I, (E - I) * sizeof(T)); - } - - /// Double the size of the allocated memory, guaranteeing space for at - /// least one more element or MinSize if specified. - void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); } - - /// Reserve enough space to add one element, and return the updated element - /// pointer in case it was a reference to the storage. - const T* reserveForParamAndGetAddress(const T& Elt, size_t N = 1) { - return this->reserveForParamAndGetAddressImpl(this, Elt, N); - } - - /// Reserve enough space to add one element, and return the updated element - /// pointer in case it was a reference to the storage. - T* reserveForParamAndGetAddress(T& Elt, size_t N = 1) { - return const_cast( - this->reserveForParamAndGetAddressImpl(this, Elt, N)); - } - - /// Copy \p V or return a reference, depending on \a ValueParamT. - static ValueParamT forward_value_param(ValueParamT V) { return V; } - - void growAndAssign(size_t NumElts, T Elt) { - // Elt has been copied in case it's an internal reference, side-stepping - // reference invalidation problems without losing the realloc optimization. - this->set_size(0); - this->grow(NumElts); - std::uninitialized_fill_n(this->begin(), NumElts, Elt); - this->set_size(NumElts); - } - - template - T& growAndEmplaceBack(ArgTypes&&... Args) { - // Use push_back with a copy in case Args has an internal reference, - // side-stepping reference invalidation problems without losing the realloc - // optimization. - push_back(T(std::forward(Args)...)); - return this->back(); - } - -public: - void push_back(ValueParamT Elt) { - const T* EltPtr = reserveForParamAndGetAddress(Elt); - memcpy(reinterpret_cast(this->end()), EltPtr, sizeof(T)); - this->set_size(this->size() + 1); - } - - void pop_back() { this->set_size(this->size() - 1); } -}; - -/// This class consists of common code factored out of the SmallVector class to -/// reduce code duplication based on the SmallVector 'N' template parameter. -template -class SmallVectorImpl : public SmallVectorTemplateBase { - using SuperClass = SmallVectorTemplateBase; - -public: - using iterator = typename SuperClass::iterator; - using const_iterator = typename SuperClass::const_iterator; - using reference = typename SuperClass::reference; - using size_type = typename SuperClass::size_type; - -protected: - using SmallVectorTemplateBase::TakesParamByValue; - using ValueParamT = typename SuperClass::ValueParamT; - - // Default ctor - Initialize to empty. - explicit SmallVectorImpl(unsigned N) - : SmallVectorTemplateBase(N) {} - - void assignRemote(SmallVectorImpl&& RHS) { - this->destroy_range(this->begin(), this->end()); - if (!this->isSmall()) - free(this->begin()); - this->BeginX = RHS.BeginX; - this->Size = RHS.Size; - this->Capacity = RHS.Capacity; - RHS.resetToSmall(); - } - -public: - SmallVectorImpl(const SmallVectorImpl&) = delete; - - ~SmallVectorImpl() { - // Subclass has already destructed this vector's elements. - // If this wasn't grown from the inline copy, deallocate the old space. - if (!this->isSmall()) - free(this->begin()); - } - - void clear() { - this->destroy_range(this->begin(), this->end()); - this->Size = 0; - } - -private: - // Make set_size() private to avoid misuse in subclasses. - using SuperClass::set_size; - - template - void resizeImpl(size_type N) { - if (N == this->size()) - return; - - if (N < this->size()) { - this->truncate(N); - return; - } - - this->reserve(N); - for (auto I = this->end(), E = this->begin() + N; I != E; ++I) - if (ForOverwrite) - new (&*I) T; - else - new (&*I) T(); - this->set_size(N); - } - -public: - void resize(size_type N) { resizeImpl(N); } - - /// Like resize, but \ref T is POD, the new values won't be initialized. - void resize_for_overwrite(size_type N) { resizeImpl(N); } - - /// Like resize, but requires that \p N is less than \a size(). - void truncate(size_type N) { - assert(this->size() >= N && "Cannot increase size with truncate"); - this->destroy_range(this->begin() + N, this->end()); - this->set_size(N); - } - - void resize(size_type N, ValueParamT NV) { - if (N == this->size()) - return; - - if (N < this->size()) { - this->truncate(N); - return; - } - - // N > this->size(). Defer to append. - this->append(N - this->size(), NV); - } - - void reserve(size_type N) { - if (this->capacity() < N) - this->grow(N); - } - - void pop_back_n(size_type NumItems) { - assert(this->size() >= NumItems); - truncate(this->size() - NumItems); - } - - [[nodiscard]] T pop_back_val() { - T Result = ::std::move(this->back()); - this->pop_back(); - return Result; - } - - void swap(SmallVectorImpl& RHS); - - /// Add the specified range to the end of the SmallVector. - template ::iterator_category, - std::input_iterator_tag>::value>> - void append(in_iter in_start, in_iter in_end) { - this->assertSafeToAddRange(in_start, in_end); - size_type NumInputs = std::distance(in_start, in_end); - this->reserve(this->size() + NumInputs); - this->uninitialized_copy(in_start, in_end, this->end()); - this->set_size(this->size() + NumInputs); - } - - /// Append \p NumInputs copies of \p Elt to the end. - void append(size_type NumInputs, ValueParamT Elt) { - const T* EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs); - std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr); - this->set_size(this->size() + NumInputs); - } - - void append(std::initializer_list IL) { - append(IL.begin(), IL.end()); - } - - void append(const SmallVectorImpl& RHS) { append(RHS.begin(), RHS.end()); } - - void assign(size_type NumElts, ValueParamT Elt) { - // Note that Elt could be an internal reference. - if (NumElts > this->capacity()) { - this->growAndAssign(NumElts, Elt); - return; - } - - // Assign over existing elements. - std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); - if (NumElts > this->size()) - std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt); - else if (NumElts < this->size()) - this->destroy_range(this->begin() + NumElts, this->end()); - this->set_size(NumElts); - } - - // FIXME: Consider assigning over existing elements, rather than clearing & - // re-initializing them - for all assign(...) variants. - - template ::iterator_category, - std::input_iterator_tag>::value>> - void assign(in_iter in_start, in_iter in_end) { - this->assertSafeToReferenceAfterClear(in_start, in_end); - clear(); - append(in_start, in_end); - } - - void assign(std::initializer_list IL) { - clear(); - append(IL); - } - - void assign(const SmallVectorImpl& RHS) { assign(RHS.begin(), RHS.end()); } - - iterator erase(const_iterator CI) { - // Just cast away constness because this is a non-const member function. - iterator I = const_cast(CI); - - assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds."); - - iterator N = I; - // Shift all elts down one. - std::move(I + 1, this->end(), I); - // Drop the last elt. - this->pop_back(); - return (N); - } - - iterator erase(const_iterator CS, const_iterator CE) { - // Just cast away constness because this is a non-const member function. - iterator S = const_cast(CS); - iterator E = const_cast(CE); - - assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds."); - - iterator N = S; - // Shift all elts down. - iterator I = std::move(E, this->end(), S); - // Drop the last elts. - this->destroy_range(I, this->end()); - this->set_size(I - this->begin()); - return (N); - } - -private: - template - iterator insert_one_impl(iterator I, ArgType&& Elt) { - // Callers ensure that ArgType is derived from T. - static_assert( - std::is_same>, - T>::value, - "ArgType must be derived from T!"); - - if (I == this->end()) { // Important special case for empty vector. - this->push_back(::std::forward(Elt)); - return this->end() - 1; - } - - assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds."); - - // Grow if necessary. - size_t Index = I - this->begin(); - std::remove_reference_t* EltPtr = - this->reserveForParamAndGetAddress(Elt); - I = this->begin() + Index; - - ::new ((void*)this->end()) T(::std::move(this->back())); - // Push everything else over. - std::move_backward(I, this->end() - 1, this->end()); - this->set_size(this->size() + 1); - - // If we just moved the element we're inserting, be sure to update - // the reference (never happens if TakesParamByValue). - static_assert(!TakesParamByValue || std::is_same::value, - "ArgType must be 'T' when taking by value!"); - if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end())) - ++EltPtr; - - *I = ::std::forward(*EltPtr); - return I; - } - -public: - iterator insert(iterator I, T&& Elt) { - return insert_one_impl(I, this->forward_value_param(std::move(Elt))); - } - - iterator insert(iterator I, const T& Elt) { - return insert_one_impl(I, this->forward_value_param(Elt)); - } - - iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) { - // Convert iterator to elt# to avoid invalidating iterator when we reserve() - size_t InsertElt = I - this->begin(); - - if (I == this->end()) { // Important special case for empty vector. - append(NumToInsert, Elt); - return this->begin() + InsertElt; - } - - assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds."); - - // Ensure there is enough space, and get the (maybe updated) address of - // Elt. - const T* EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert); - - // Uninvalidate the iterator. - I = this->begin() + InsertElt; - - // If there are more elements between the insertion point and the end of the - // range than there are being inserted, we can use a simple approach to - // insertion. Since we already reserved space, we know that this won't - // reallocate the vector. - if (size_t(this->end() - I) >= NumToInsert) { - T* OldEnd = this->end(); - append(std::move_iterator(this->end() - NumToInsert), - std::move_iterator(this->end())); - - // Copy the existing elements that get replaced. - std::move_backward(I, OldEnd - NumToInsert, OldEnd); - - // If we just moved the element we're inserting, be sure to update - // the reference (never happens if TakesParamByValue). - if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) - EltPtr += NumToInsert; - - std::fill_n(I, NumToInsert, *EltPtr); - return I; - } - - // Otherwise, we're inserting more elements than exist already, and we're - // not inserting at the end. - - // Move over the elements that we're about to overwrite. - T* OldEnd = this->end(); - this->set_size(this->size() + NumToInsert); - size_t NumOverwritten = OldEnd - I; - this->uninitialized_move(I, OldEnd, this->end() - NumOverwritten); - - // If we just moved the element we're inserting, be sure to update - // the reference (never happens if TakesParamByValue). - if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) - EltPtr += NumToInsert; - - // Replace the overwritten part. - std::fill_n(I, NumOverwritten, *EltPtr); - - // Insert the non-overwritten middle part. - std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr); - return I; - } - - template ::iterator_category, - std::input_iterator_tag>::value>> - iterator insert(iterator I, ItTy From, ItTy To) { - // Convert iterator to elt# to avoid invalidating iterator when we reserve() - size_t InsertElt = I - this->begin(); - - if (I == this->end()) { // Important special case for empty vector. - append(From, To); - return this->begin() + InsertElt; - } - - assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds."); - - // Check that the reserve that follows doesn't invalidate the iterators. - this->assertSafeToAddRange(From, To); - - size_t NumToInsert = std::distance(From, To); - - // Ensure there is enough space. - reserve(this->size() + NumToInsert); - - // Uninvalidate the iterator. - I = this->begin() + InsertElt; - - // If there are more elements between the insertion point and the end of the - // range than there are being inserted, we can use a simple approach to - // insertion. Since we already reserved space, we know that this won't - // reallocate the vector. - if (size_t(this->end() - I) >= NumToInsert) { - T* OldEnd = this->end(); - append(std::move_iterator(this->end() - NumToInsert), - std::move_iterator(this->end())); - - // Copy the existing elements that get replaced. - std::move_backward(I, OldEnd - NumToInsert, OldEnd); - - std::copy(From, To, I); - return I; - } - - // Otherwise, we're inserting more elements than exist already, and we're - // not inserting at the end. - - // Move over the elements that we're about to overwrite. - T* OldEnd = this->end(); - this->set_size(this->size() + NumToInsert); - size_t NumOverwritten = OldEnd - I; - this->uninitialized_move(I, OldEnd, this->end() - NumOverwritten); - - // Replace the overwritten part. - for (T* J = I; NumOverwritten > 0; --NumOverwritten) { - *J = *From; - ++J; - ++From; - } - - // Insert the non-overwritten middle part. - this->uninitialized_copy(From, To, OldEnd); - return I; - } - - void insert(iterator I, std::initializer_list IL) { - insert(I, IL.begin(), IL.end()); - } - - template - reference emplace_back(ArgTypes&&... Args) { - if (LLVM_UNLIKELY(this->size() >= this->capacity())) - return this->growAndEmplaceBack(std::forward(Args)...); - - ::new ((void*)this->end()) T(std::forward(Args)...); - this->set_size(this->size() + 1); - return this->back(); - } - - SmallVectorImpl& operator=(const SmallVectorImpl& RHS); - - SmallVectorImpl& operator=(SmallVectorImpl&& RHS); - - bool operator==(const SmallVectorImpl& RHS) const { - if (this->size() != RHS.size()) return false; - return std::equal(this->begin(), this->end(), RHS.begin()); - } - bool operator!=(const SmallVectorImpl& RHS) const { - return !(*this == RHS); - } - - bool operator<(const SmallVectorImpl& RHS) const { - return std::lexicographical_compare(this->begin(), this->end(), RHS.begin(), RHS.end()); - } -}; - -template -void SmallVectorImpl::swap(SmallVectorImpl& RHS) { - if (this == &RHS) return; - - // We can only avoid copying elements if neither vector is small. - if (!this->isSmall() && !RHS.isSmall()) { - std::swap(this->BeginX, RHS.BeginX); - std::swap(this->Size, RHS.Size); - std::swap(this->Capacity, RHS.Capacity); - return; - } - this->reserve(RHS.size()); - RHS.reserve(this->size()); - - // Swap the shared elements. - size_t NumShared = this->size(); - if (NumShared > RHS.size()) NumShared = RHS.size(); - for (size_type i = 0; i != NumShared; ++i) - std::swap((*this)[i], RHS[i]); - - // Copy over the extra elts. - if (this->size() > RHS.size()) { - size_t EltDiff = this->size() - RHS.size(); - this->uninitialized_copy(this->begin() + NumShared, this->end(), RHS.end()); - RHS.set_size(RHS.size() + EltDiff); - this->destroy_range(this->begin() + NumShared, this->end()); - this->set_size(NumShared); - } else if (RHS.size() > this->size()) { - size_t EltDiff = RHS.size() - this->size(); - this->uninitialized_copy(RHS.begin() + NumShared, RHS.end(), this->end()); - this->set_size(this->size() + EltDiff); - this->destroy_range(RHS.begin() + NumShared, RHS.end()); - RHS.set_size(NumShared); - } -} - -template -SmallVectorImpl& SmallVectorImpl:: -operator=(const SmallVectorImpl& RHS) { - // Avoid self-assignment. - if (this == &RHS) return *this; - - // If we already have sufficient space, assign the common elements, then - // destroy any excess. - size_t RHSSize = RHS.size(); - size_t CurSize = this->size(); - if (CurSize >= RHSSize) { - // Assign common elements. - iterator NewEnd; - if (RHSSize) - NewEnd = std::copy(RHS.begin(), RHS.begin() + RHSSize, this->begin()); - else - NewEnd = this->begin(); - - // Destroy excess elements. - this->destroy_range(NewEnd, this->end()); - - // Trim. - this->set_size(RHSSize); - return *this; - } - - // If we have to grow to have enough elements, destroy the current elements. - // This allows us to avoid copying them during the grow. - // FIXME: don't do this if they're efficiently moveable. - if (this->capacity() < RHSSize) { - // Destroy current elements. - this->clear(); - CurSize = 0; - this->grow(RHSSize); - } else if (CurSize) { - // Otherwise, use assignment for the already-constructed elements. - std::copy(RHS.begin(), RHS.begin() + CurSize, this->begin()); - } - - // Copy construct the new elements in place. - this->uninitialized_copy(RHS.begin() + CurSize, RHS.end(), this->begin() + CurSize); - - // Set end. - this->set_size(RHSSize); - return *this; -} - -template -SmallVectorImpl& SmallVectorImpl::operator=(SmallVectorImpl&& RHS) { - // Avoid self-assignment. - if (this == &RHS) return *this; - - // If the RHS isn't small, clear this vector and then steal its buffer. - if (!RHS.isSmall()) { - this->assignRemote(std::move(RHS)); - return *this; - } - - // If we already have sufficient space, assign the common elements, then - // destroy any excess. - size_t RHSSize = RHS.size(); - size_t CurSize = this->size(); - if (CurSize >= RHSSize) { - // Assign common elements. - iterator NewEnd = this->begin(); - if (RHSSize) - NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd); - - // Destroy excess elements and trim the bounds. - this->destroy_range(NewEnd, this->end()); - this->set_size(RHSSize); - - // Clear the RHS. - RHS.clear(); - - return *this; - } - - // If we have to grow to have enough elements, destroy the current elements. - // This allows us to avoid copying them during the grow. - // FIXME: this may not actually make any sense if we can efficiently move - // elements. - if (this->capacity() < RHSSize) { - // Destroy current elements. - this->clear(); - CurSize = 0; - this->grow(RHSSize); - } else if (CurSize) { - // Otherwise, use assignment for the already-constructed elements. - std::move(RHS.begin(), RHS.begin() + CurSize, this->begin()); - } - - // Move-construct the new elements in place. - this->uninitialized_move(RHS.begin() + CurSize, RHS.end(), this->begin() + CurSize); - - // Set end. - this->set_size(RHSSize); - - RHS.clear(); - return *this; -} - -/// Storage for the SmallVector elements. This is specialized for the N=0 case -/// to avoid allocating unnecessary storage. -template -struct SmallVectorStorage { - alignas(T) char InlineElts[N * sizeof(T)]; -}; - -/// We need the storage to be properly aligned even for small-size of 0 so that -/// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is -/// well-defined. -template -struct alignas(T) SmallVectorStorage {}; - -/// Forward declaration of SmallVector so that -/// calculateSmallVectorDefaultInlinedElements can reference -/// `sizeof(SmallVector)`. -template -class SmallVector; - -/// Helper class for calculating the default number of inline elements for -/// `SmallVector`. -/// -/// This should be migrated to a constexpr function when our minimum -/// compiler support is enough for multi-statement constexpr functions. -template -struct CalculateSmallVectorDefaultInlinedElements { - // Parameter controlling the default number of inlined elements - // for `SmallVector`. - // - // The default number of inlined elements ensures that - // 1. There is at least one inlined element. - // 2. `sizeof(SmallVector) <= kPreferredSmallVectorSizeof` unless - // it contradicts 1. - static constexpr size_t kPreferredSmallVectorSizeof = 64; - - // static_assert that sizeof(T) is not "too big". - // - // Because our policy guarantees at least one inlined element, it is possible - // for an arbitrarily large inlined element to allocate an arbitrarily large - // amount of inline storage. We generally consider it an antipattern for a - // SmallVector to allocate an excessive amount of inline storage, so we want - // to call attention to these cases and make sure that users are making an - // intentional decision if they request a lot of inline storage. - // - // We want this assertion to trigger in pathological cases, but otherwise - // not be too easy to hit. To accomplish that, the cutoff is actually somewhat - // larger than kPreferredSmallVectorSizeof (otherwise, - // `SmallVector>` would be one easy way to trip it, and that - // pattern seems useful in practice). - // - // One wrinkle is that this assertion is in theory non-portable, since - // sizeof(T) is in general platform-dependent. However, we don't expect this - // to be much of an issue, because most LLVM development happens on 64-bit - // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for - // 32-bit hosts, dodging the issue. The reverse situation, where development - // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a - // 64-bit host, is expected to be very rare. - static_assert( - sizeof(T) <= 256, - "You are trying to use a default number of inlined elements for " - "`SmallVector` but `sizeof(T)` is really big! Please use an " - "explicit number of inlined elements with `SmallVector` to make " - "sure you really want that much inline storage."); - - // Discount the size of the header itself when calculating the maximum inline - // bytes. - static constexpr size_t PreferredInlineBytes = - kPreferredSmallVectorSizeof - sizeof(SmallVector); - static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T); - static constexpr size_t value = - NumElementsThatFit == 0 ? 1 : NumElementsThatFit; -}; - -/// This is a 'vector' (really, a variable-sized array), optimized -/// for the case when the array is small. It contains some number of elements -/// in-place, which allows it to avoid heap allocation when the actual number of -/// elements is below that threshold. This allows normal "small" cases to be -/// fast without losing generality for large inputs. -/// -/// \note -/// In the absence of a well-motivated choice for the number of inlined -/// elements \p N, it is recommended to use \c SmallVector (that is, -/// omitting the \p N). This will choose a default number of inlined elements -/// reasonable for allocation on the stack (for example, trying to keep \c -/// sizeof(SmallVector) around 64 bytes). -/// -/// \warning This does not attempt to be exception safe. -/// -/// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h -template ::value> -class SmallVector : public SmallVectorImpl, - SmallVectorStorage { -public: - SmallVector() - : SmallVectorImpl(N) {} - - ~SmallVector() { - // Destroy the constructed elements in the vector. - this->destroy_range(this->begin(), this->end()); - } - - explicit SmallVector(size_t Size, const T& Value = T()) - : SmallVectorImpl(N) { - this->assign(Size, Value); - } - - template ::iterator_category, - std::input_iterator_tag>::value>> - SmallVector(ItTy S, ItTy E) - : SmallVectorImpl(N) { - this->append(S, E); - } - - template - explicit SmallVector(const iterator_range& R) - : SmallVectorImpl(N) { - this->append(R.begin(), R.end()); - } - - SmallVector(std::initializer_list IL) - : SmallVectorImpl(N) { - this->assign(IL); - } - - SmallVector(const SmallVector& RHS) - : SmallVectorImpl(N) { - if (!RHS.empty()) - SmallVectorImpl::operator=(RHS); - } - - SmallVector& operator=(const SmallVector& RHS) { - SmallVectorImpl::operator=(RHS); - return *this; - } - - SmallVector(SmallVector&& RHS) - : SmallVectorImpl(N) { - if (!RHS.empty()) - SmallVectorImpl::operator=(::std::move(RHS)); - } - - SmallVector(SmallVectorImpl&& RHS) - : SmallVectorImpl(N) { - if (!RHS.empty()) - SmallVectorImpl::operator=(::std::move(RHS)); - } - - SmallVector& operator=(SmallVector&& RHS) { - if (N) { - SmallVectorImpl::operator=(::std::move(RHS)); - return *this; - } - // SmallVectorImpl::operator= does not leverage N==0. Optimize the - // case. - if (this == &RHS) - return *this; - if (RHS.empty()) { - this->destroy_range(this->begin(), this->end()); - this->Size = 0; - } else { - this->assignRemote(std::move(RHS)); - } - return *this; - } - - SmallVector& operator=(SmallVectorImpl&& RHS) { - SmallVectorImpl::operator=(::std::move(RHS)); - return *this; - } - - SmallVector& operator=(std::initializer_list IL) { - this->assign(IL); - return *this; - } -}; - -template -inline size_t capacity_in_bytes(const SmallVector& X) { - return X.capacity_in_bytes(); -} - -template -using ValueTypeFromRangeType = - typename std::remove_const()))>::type>::type; - -/// Given a range of type R, iterate the entire range and return a -/// SmallVector with elements of the vector. This is useful, for example, -/// when you want to iterate a range and then sort the results. -template -SmallVector, Size> to_vector(R&& Range) { - return { std::begin(Range), std::end(Range) }; -} -template -SmallVector, - CalculateSmallVectorDefaultInlinedElements< - ValueTypeFromRangeType>::value> -to_vector(R&& Range) { - return { std::begin(Range), std::end(Range) }; -} - -namespace std { - -/// Implement std::swap in terms of SmallVector swap. -template -inline void swap(SmallVectorImpl& LHS, SmallVectorImpl& RHS) { - LHS.swap(RHS); -} - -/// Implement std::swap in terms of SmallVector swap. -template -inline void swap(SmallVector& LHS, SmallVector& RHS) { - LHS.swap(RHS); -} - -} // namespace std - -#ifdef _MSC_VER -# pragma warning(pop) -#endif -- cgit v1.2.3-70-g09d2