diff options
Diffstat (limited to '3rdparty/glm/source/test/gtx/gtx_pca.cpp')
-rw-r--r-- | 3rdparty/glm/source/test/gtx/gtx_pca.cpp | 724 |
1 files changed, 724 insertions, 0 deletions
diff --git a/3rdparty/glm/source/test/gtx/gtx_pca.cpp b/3rdparty/glm/source/test/gtx/gtx_pca.cpp new file mode 100644 index 0000000..120e277 --- /dev/null +++ b/3rdparty/glm/source/test/gtx/gtx_pca.cpp @@ -0,0 +1,724 @@ +#define GLM_ENABLE_EXPERIMENTAL +#include <glm/glm.hpp> +#include <glm/gtx/pca.hpp> +#include <glm/gtc/epsilon.hpp> +#include <glm/gtx/string_cast.hpp> + +#include <cstdio> +#include <vector> +#if GLM_HAS_CXX11_STL == 1 +#include <random> +#endif + +template<typename T> +T myEpsilon(); +template<> +GLM_INLINE GLM_CONSTEXPR float myEpsilon<float>() { return 0.00001f; } +template<> +GLM_INLINE GLM_CONSTEXPR double myEpsilon<double>() { return 0.000001; } + +template<glm::length_t D, typename T, glm::qualifier Q> +bool vectorEpsilonEqual(glm::vec<D, T, Q> const& a, glm::vec<D, T, Q> const& b, T epsilon) +{ + for (int c = 0; c < D; ++c) + if (!glm::epsilonEqual(a[c], b[c], epsilon)) + { + fprintf(stderr, "failing vectorEpsilonEqual: [%d] %lf != %lf (~%lf)\n", + c, + static_cast<double>(a[c]), + static_cast<double>(b[c]), + static_cast<double>(epsilon) + ); + return false; + } + return true; +} + +template<glm::length_t D, typename T, glm::qualifier Q> +bool matrixEpsilonEqual(glm::mat<D, D, T, Q> const& a, glm::mat<D, D, T, Q> const& b, T epsilon) +{ + for (int c = 0; c < D; ++c) + for (int r = 0; r < D; ++r) + if (!glm::epsilonEqual(a[c][r], b[c][r], epsilon)) + { + fprintf(stderr, "failing vectorEpsilonEqual: [%d][%d] %lf != %lf (~%lf)\n", + c, r, + static_cast<double>(a[c][r]), + static_cast<double>(b[c][r]), + static_cast<double>(epsilon) + ); + return false; + } + return true; +} + +template<typename T> +GLM_INLINE bool sameSign(T const& a, T const& b) +{ + return ((a >= 0) && (b >= 0)) || ((a < 0) && (b < 0)); +} + +template<typename T> +T failReport(T line) +{ + fprintf(stderr, "Failed in line %d\n", static_cast<int>(line)); + return line; +} + +// Test data: 1AGA 'agarose double helix' +// https://www.rcsb.org/structure/1aga +// The fourth coordinate is randomized +namespace _1aga +{ + + // Fills `outTestData` with hard-coded atom positions from 1AGA + // The fourth coordinate is randomized + template<typename vec> + void fillTestData(std::vector<vec>& outTestData) + { + // x,y,z coordinates copied from RCSB PDB file of 1AGA + // w coordinate randomized with standard normal distribution + static const double _1aga[] = { + 3.219, -0.637, 19.462, 2.286, + 4.519, 0.024, 18.980, -0.828, + 4.163, 1.425, 18.481, -0.810, + 3.190, 1.341, 17.330, -0.170, + 1.962, 0.991, 18.165, 0.816, + 2.093, 1.952, 19.331, 0.276, + 5.119, -0.701, 17.908, -0.490, + 3.517, 2.147, 19.514, -0.207, + 2.970, 2.609, 16.719, 0.552, + 2.107, -0.398, 18.564, 0.403, + 2.847, 2.618, 15.335, 0.315, + 1.457, 3.124, 14.979, 0.683, + 1.316, 3.291, 13.473, 0.446, + 2.447, 4.155, 12.931, 1.324, + 3.795, 3.614, 13.394, 0.112, + 4.956, 4.494, 12.982, 0.253, + 0.483, 2.217, 15.479, 1.316, + 0.021, 3.962, 13.166, 1.522, + 2.311, 5.497, 13.395, 0.248, + 3.830, 3.522, 14.827, 0.591, + 5.150, 4.461, 11.576, 0.635, + -1.057, 3.106, 13.132, 0.191, + -2.280, 3.902, 12.650, 1.135, + -3.316, 2.893, 12.151, 0.794, + -2.756, 2.092, 11.000, 0.720, + -1.839, 1.204, 11.835, -1.172, + -2.737, 0.837, 13.001, -0.313, + -1.952, 4.784, 11.578, 2.082, + -3.617, 1.972, 13.184, 0.653, + -3.744, 1.267, 10.389, -0.413, + -0.709, 2.024, 12.234, -1.747, + -3.690, 1.156, 9.005, -1.275, + -3.434, -0.300, 8.649, 0.441, + -3.508, -0.506, 7.143, 0.237, + -4.822, 0.042, 6.601, -2.856, + -5.027, 1.480, 7.064, 0.985, + -6.370, 2.045, 6.652, 0.915, + -2.162, -0.690, 9.149, 1.100, + -3.442, -1.963, 6.836, -0.081, + -5.916, -0.747, 7.065, -2.345, + -4.965, 1.556, 8.497, 0.504, + -6.439, 2.230, 5.246, 1.451, + -2.161, -2.469, 6.802, -1.171, + -2.239, -3.925, 6.320, -1.434, + -0.847, -4.318, 5.821, 0.098, + -0.434, -3.433, 4.670, -1.446, + -0.123, -2.195, 5.505, 0.182, + 0.644, -2.789, 6.671, 0.865, + -3.167, -4.083, 5.248, -0.098, + 0.101, -4.119, 6.854, -0.001, + 0.775, -3.876, 4.059, 1.061, + -1.398, -1.625, 5.904, 0.230, + 0.844, -3.774, 2.675, 1.313, + 1.977, -2.824, 2.319, -0.112, + 2.192, -2.785, 0.813, -0.981, + 2.375, -4.197, 0.271, -0.355, + 1.232, -5.093, 0.734, 0.632, + 1.414, -6.539, 0.322, 0.576, + 1.678, -1.527, 2.819, -1.187, + 3.421, -1.999, 0.496, -1.770, + 3.605, -4.750, 0.735, 1.099, + 1.135, -5.078, 2.167, 0.854, + 1.289, -6.691, -1.084, -0.487, + -1.057, 3.106, 22.602, -1.297, + -2.280, 3.902, 22.120, 0.376, + -3.316, 2.893, 21.621, 0.932, + -2.756, 2.092, 20.470, 1.680, + -1.839, 1.204, 21.305, 0.615, + -2.737, 0.837, 22.471, 0.899, + -1.952, 4.784, 21.048, -0.521, + -3.617, 1.972, 22.654, 0.133, + -3.744, 1.267, 19.859, 0.081, + -0.709, 2.024, 21.704, 1.420, + -3.690, 1.156, 18.475, -0.850, + -3.434, -0.300, 18.119, -0.249, + -3.508, -0.506, 16.613, 1.434, + -4.822, 0.042, 16.071, -2.466, + -5.027, 1.480, 16.534, -1.045, + -6.370, 2.045, 16.122, 1.707, + -2.162, -0.690, 18.619, -2.023, + -3.442, -1.963, 16.336, -0.304, + -5.916, -0.747, 16.535, 0.979, + -4.965, 1.556, 17.967, -1.165, + -6.439, 2.230, 14.716, 0.929, + -2.161, -2.469, 16.302, -0.234, + -2.239, -3.925, 15.820, -0.228, + -0.847, -4.318, 15.321, 1.844, + -0.434, -3.433, 14.170, 1.132, + -0.123, -2.195, 15.005, 0.211, + 0.644, -2.789, 16.171, -0.632, + -3.167, -4.083, 14.748, -0.519, + 0.101, -4.119, 16.354, 0.173, + 0.775, -3.876, 13.559, 1.243, + -1.398, -1.625, 15.404, -0.187, + 0.844, -3.774, 12.175, -1.332, + 1.977, -2.824, 11.819, -1.616, + 2.192, -2.785, 10.313, 1.320, + 2.375, -4.197, 9.771, 0.237, + 1.232, -5.093, 10.234, 0.851, + 1.414, -6.539, 9.822, 1.816, + 1.678, -1.527, 12.319, -1.657, + 3.421, -1.999, 10.036, 1.559, + 3.605, -4.750, 10.235, 0.831, + 1.135, -5.078, 11.667, 0.060, + 1.289, -6.691, 8.416, 1.066, + 3.219, -0.637, 10.002, 2.111, + 4.519, 0.024, 9.520, -0.874, + 4.163, 1.425, 9.021, -1.012, + 3.190, 1.341, 7.870, -0.250, + 1.962, 0.991, 8.705, -1.359, + 2.093, 1.952, 9.871, -0.126, + 5.119, -0.701, 8.448, 0.995, + 3.517, 2.147, 10.054, 0.941, + 2.970, 2.609, 7.259, -0.562, + 2.107, -0.398, 9.104, -0.038, + 2.847, 2.618, 5.875, 0.398, + 1.457, 3.124, 5.519, 0.481, + 1.316, 3.291, 4.013, -0.187, + 2.447, 4.155, 3.471, -0.429, + 3.795, 3.614, 3.934, -0.432, + 4.956, 4.494, 3.522, -0.788, + 0.483, 2.217, 6.019, -0.923, + 0.021, 3.962, 3.636, -0.316, + 2.311, 5.497, 3.935, -1.917, + 3.830, 3.522, 5.367, -0.302, + 5.150, 4.461, 2.116, -1.615 + }; + static const glm::length_t _1agaSize = sizeof(_1aga) / (4 * sizeof(double)); + + outTestData.resize(_1agaSize); + for(glm::length_t i = 0; i < _1agaSize; ++i) + for(glm::length_t d = 0; d < static_cast<glm::length_t>(vec::length()); ++d) + outTestData[i][d] = static_cast<typename vec::value_type>(_1aga[i * 4 + d]); + } + + // All reference values computed separately using symbolic precision + // https://github.com/sgrottel/exp-pca-precision + // This applies to all functions named: `_1aga::expected*()` + + GLM_INLINE glm::dmat4 const& expectedCovarData() + { + static const glm::dmat4 covar4x4d( + 9.62434068027210898322, -0.00006657369614512471, -4.29321376568405099761, 0.01879374187452758846, + -0.00006657369614512471, 9.62443937868480681175, 5.35113872637944076871, -0.11569259145880574080, + -4.29321376568405099761, 5.35113872637944076871, 35.62848549634668415820, 0.90874239254220201545, + 0.01879374187452758846, -0.11569259145880574080, 0.90874239254220201545, 1.09705971856890904803 + ); + return covar4x4d; + } + + template<glm::length_t D> + GLM_INLINE glm::vec<D, double, glm::defaultp> const& expectedEigenvalues(); + template<> + GLM_INLINE glm::dvec2 const& expectedEigenvalues<2>() + { + static const glm::dvec2 evals2( + 9.62447289926297399961763301774251330057894539467032275382255, + 9.62430715969394210015560961264297422776572580714373620309355 + ); + return evals2; + } + template<> + GLM_INLINE glm::dvec3 const& expectedEigenvalues<3>() + { + static const glm::dvec3 evals3( + 37.3274494274683425233695502581182052836449738530676689472257, + 9.62431434161498823505729817436585077939509766554969096873168, + 7.92550178622027216422369326567668971675332732240052872097887 + ); + return evals3; + } + template<> + GLM_INLINE glm::dvec4 const& expectedEigenvalues<4>() + { + static const glm::dvec4 evals4( + 37.3477389918792213596879452204499702406947817221901007885630, + 9.62470688921105696017807313860277172063600080413412567999700, + 7.94017075281634999342344275928070533134615133171969063657713, + 1.06170863996588365446060186982477896078741484440002343404155 + ); + return evals4; + } + + template<glm::length_t D> + GLM_INLINE glm::mat<D, D, double, glm::defaultp> const& expectedEigenvectors(); + template<> + GLM_INLINE glm::dmat2 const& expectedEigenvectors<2>() + { + static const glm::dmat2 evecs2( + glm::dvec2( + -0.503510847492551904906870957742619139443409162857537237123308, + 1 + ), + glm::dvec2( + 1.98605453086051402895741763848787613048533838388005162794043, + 1 + ) + ); + return evecs2; + } + template<> + GLM_INLINE glm::dmat3 const& expectedEigenvectors<3>() + { + static const glm::dmat3 evecs3( + glm::dvec3( + -0.154972738414395866005286433008304444294405085038689821864654, + 0.193161285869815165989799191097521722568079378840201629578695, + 1 + ), + glm::dvec3( + -158565.112775416943154745839952575022429933119522746586149868, + -127221.506282351944358932458687410410814983610301927832439675, + 1 + ), + glm::dvec3( + 2.52702248596556806145700361724323960543858113426446460406536, + -3.14959802931313870497377546974185300816008580801457419079412, + 1 + ) + ); + return evecs3; + } + template<> + GLM_INLINE glm::dmat4 const& expectedEigenvectors<4>() + { + static const glm::dmat4 evecs4( + glm::dvec4( + -6.35322390281037045217295803597357821705371650876122113027264, + 7.91546394153385394517767054617789939529794642646629201212056, + 41.0301543819240679808549819457450130787045236815736490549663, + 1 + ), + glm::dvec4( + -114.622418941087829756565311692197154422302604224781253861297, + -92.2070185807065289900871215218752013659402949497379896153118, + 0.0155846091025912430932734548933329458404665760587569100867246, + 1 + ), + glm::dvec4( + 13.1771887761559019483954743159026938257325190511642952175789, + -16.3688257459634877666638419310116970616615816436949741766895, + 5.17386502341472097227408249233288958059579189051394773143190, + 1 + ), + glm::dvec4( + -0.0192777078948229800494895064532553117703859768210647632969276, + 0.0348034950916108873629241563077465542944938906271231198634442, + -0.0340715609308469289267379681032545422644143611273049912226126, + 1 + ) + ); + return evecs4; + } + +} // namespace _1aga + +// Compute center of gravity +template<typename vec> +vec computeCenter(const std::vector<vec>& testData) +{ + double c[4]; + std::fill(c, c + vec::length(), 0.0); + + typename std::vector<vec>::const_iterator e = testData.end(); + for(typename std::vector<vec>::const_iterator i = testData.begin(); i != e; ++i) + for(glm::length_t d = 0; d < static_cast<glm::length_t>(vec::length()); ++d) + c[d] += static_cast<double>((*i)[d]); + + vec cVec(0); + for(glm::length_t d = 0; d < static_cast<glm::length_t>(vec::length()); ++d) + cVec[d] = static_cast<typename vec::value_type>(c[d] / static_cast<double>(testData.size())); + return cVec; +} + +// Test sorting of Eigenvalue&Eigenvector lists. Use exhaustive search. +template<glm::length_t D, typename T, glm::qualifier Q> +int testEigenvalueSort() +{ + // Test input data: four arbitrary values + static const glm::vec<D, T, Q> refVal( + glm::vec<4, T, Q>( + 10, 8, 6, 4 + ) + ); + // Test input data: four arbitrary vectors, which can be matched to the above values + static const glm::mat<D, D, T, Q> refVec( + glm::mat<4, 4, T, Q>( + 10, 20, 5, 40, + 8, 16, 4, 32, + 6, 12, 3, 24, + 4, 8, 2, 16 + ) + ); + // Permutations of test input data for exhaustive check, based on `D` (1 <= D <= 4) + static const int permutationCount[] = { + 0, + 1, + 2, + 6, + 24 + }; + // The permutations t perform, based on `D` (1 <= D <= 4) + static const glm::ivec4 permutation[] = { + glm::ivec4(0, 1, 2, 3), + glm::ivec4(1, 0, 2, 3), // last for D = 2 + glm::ivec4(0, 2, 1, 3), + glm::ivec4(1, 2, 0, 3), + glm::ivec4(2, 0, 1, 3), + glm::ivec4(2, 1, 0, 3), // last for D = 3 + glm::ivec4(0, 1, 3, 2), + glm::ivec4(1, 0, 3, 2), + glm::ivec4(0, 2, 3, 1), + glm::ivec4(1, 2, 3, 0), + glm::ivec4(2, 0, 3, 1), + glm::ivec4(2, 1, 3, 0), + glm::ivec4(0, 3, 1, 2), + glm::ivec4(1, 3, 0, 2), + glm::ivec4(0, 3, 2, 1), + glm::ivec4(1, 3, 2, 0), + glm::ivec4(2, 3, 0, 1), + glm::ivec4(2, 3, 1, 0), + glm::ivec4(3, 0, 1, 2), + glm::ivec4(3, 1, 0, 2), + glm::ivec4(3, 0, 2, 1), + glm::ivec4(3, 1, 2, 0), + glm::ivec4(3, 2, 0, 1), + glm::ivec4(3, 2, 1, 0) // last for D = 4 + }; + + // initial sanity check + if(!vectorEpsilonEqual(refVal, refVal, myEpsilon<T>())) + return failReport(__LINE__); + if(!matrixEpsilonEqual(refVec, refVec, myEpsilon<T>())) + return failReport(__LINE__); + + // Exhaustive search through all permutations + for(int p = 0; p < permutationCount[D]; ++p) + { + glm::vec<D, T, Q> testVal; + glm::mat<D, D, T, Q> testVec; + for(int i = 0; i < D; ++i) + { + testVal[i] = refVal[permutation[p][i]]; + testVec[i] = refVec[permutation[p][i]]; + } + + glm::sortEigenvalues(testVal, testVec); + + if (!vectorEpsilonEqual(testVal, refVal, myEpsilon<T>())) + return failReport(__LINE__); + if (!matrixEpsilonEqual(testVec, refVec, myEpsilon<T>())) + return failReport(__LINE__); + } + + return 0; +} + +// Test covariance matrix creation functions +template<glm::length_t D, typename T, glm::qualifier Q> +int testCovar( +#if GLM_HAS_CXX11_STL == 1 + glm::length_t dataSize, unsigned int randomEngineSeed +#else // GLM_HAS_CXX11_STL == 1 + glm::length_t, unsigned int +#endif // GLM_HAS_CXX11_STL == 1 +) +{ + typedef glm::vec<D, T, Q> vec; + typedef glm::mat<D, D, T, Q> mat; + + // #1: test expected result with fixed data set + std::vector<vec> testData; + _1aga::fillTestData(testData); + + // compute center of gravity + vec center = computeCenter(testData); + + mat covarMat = glm::computeCovarianceMatrix(testData.data(), testData.size(), center); + if(!matrixEpsilonEqual(covarMat, mat(_1aga::expectedCovarData()), myEpsilon<T>())) + { + fprintf(stderr, "Reconstructed covarMat:\n%s\n", glm::to_string(covarMat).c_str()); + return failReport(__LINE__); + } + + // #2: test function variant consitency with random data +#if GLM_HAS_CXX11_STL == 1 + std::default_random_engine rndEng(randomEngineSeed); + std::normal_distribution<T> normalDist; + testData.resize(dataSize); + // some common offset of all data + T offset[D]; + for(glm::length_t d = 0; d < D; ++d) + offset[d] = normalDist(rndEng); + // init data + for(glm::length_t i = 0; i < dataSize; ++i) + for(glm::length_t d = 0; d < D; ++d) + testData[i][d] = offset[d] + normalDist(rndEng); + center = computeCenter(testData); + + std::vector<vec> centeredTestData; + centeredTestData.reserve(testData.size()); + typename std::vector<vec>::const_iterator e = testData.end(); + for(typename std::vector<vec>::const_iterator i = testData.begin(); i != e; ++i) + centeredTestData.push_back((*i) - center); + + mat c1 = glm::computeCovarianceMatrix(centeredTestData.data(), centeredTestData.size()); + mat c2 = glm::computeCovarianceMatrix<D, T, Q>(centeredTestData.begin(), centeredTestData.end()); + mat c3 = glm::computeCovarianceMatrix(testData.data(), testData.size(), center); + mat c4 = glm::computeCovarianceMatrix<D, T, Q>(testData.rbegin(), testData.rend(), center); + + if(!matrixEpsilonEqual(c1, c2, myEpsilon<T>())) + return failReport(__LINE__); + if(!matrixEpsilonEqual(c1, c3, myEpsilon<T>())) + return failReport(__LINE__); + if(!matrixEpsilonEqual(c1, c4, myEpsilon<T>())) + return failReport(__LINE__); +#endif // GLM_HAS_CXX11_STL == 1 + return 0; +} + +// Computes eigenvalues and eigenvectors from well-known covariance matrix +template<glm::length_t D, typename T, glm::qualifier Q> +int testEigenvectors(T epsilon) +{ + typedef glm::vec<D, T, Q> vec; + typedef glm::mat<D, D, T, Q> mat; + + // test expected result with fixed data set + std::vector<vec> testData; + mat covarMat(_1aga::expectedCovarData()); + + vec eigenvalues; + mat eigenvectors; + unsigned int c = glm::findEigenvaluesSymReal(covarMat, eigenvalues, eigenvectors); + if(c != D) + return failReport(__LINE__); + glm::sortEigenvalues(eigenvalues, eigenvectors); + + if (!vectorEpsilonEqual(eigenvalues, vec(_1aga::expectedEigenvalues<D>()), epsilon)) + return failReport(__LINE__); + + for (int i = 0; i < D; ++i) + { + vec act = glm::normalize(eigenvectors[i]); + vec exp = glm::normalize(_1aga::expectedEigenvectors<D>()[i]); + if (!sameSign(act[0], exp[0])) exp = -exp; + if (!vectorEpsilonEqual(act, exp, epsilon)) + return failReport(__LINE__); + } + + return 0; +} + +// A simple small smoke test: +// - a uniformly sampled block +// - reconstruct main axes +// - check order of eigenvalues equals order of extends of block in direction of main axes +int smokeTest() +{ + using glm::vec3; + using glm::mat3; + std::vector<vec3> pts; + pts.reserve(11 * 15 * 7); + + for(int x = -5; x <= 5; ++x) + for(int y = -7; y <= 7; ++y) + for(int z = -3; z <= 3; ++z) + pts.push_back(vec3(x, y, z)); + + mat3 covar = glm::computeCovarianceMatrix(pts.data(), pts.size()); + mat3 eVec; + vec3 eVal; + int eCnt = glm::findEigenvaluesSymReal(covar, eVal, eVec); + if(eCnt != 3) + return failReport(__LINE__); + + // sort eVec by decending eVal + if(eVal[0] < eVal[1]) + { + std::swap(eVal[0], eVal[1]); + std::swap(eVec[0], eVec[1]); + } + if(eVal[0] < eVal[2]) + { + std::swap(eVal[0], eVal[2]); + std::swap(eVec[0], eVec[2]); + } + if(eVal[1] < eVal[2]) + { + std::swap(eVal[1], eVal[2]); + std::swap(eVec[1], eVec[2]); + } + + if(!vectorEpsilonEqual(glm::abs(eVec[0]), vec3(0, 1, 0), myEpsilon<float>())) + return failReport(__LINE__); + if(!vectorEpsilonEqual(glm::abs(eVec[1]), vec3(1, 0, 0), myEpsilon<float>())) + return failReport(__LINE__); + if(!vectorEpsilonEqual(glm::abs(eVec[2]), vec3(0, 0, 1), myEpsilon<float>())) + return failReport(__LINE__); + + return 0; +} + +#if GLM_HAS_CXX11_STL == 1 +int rndTest(unsigned int randomEngineSeed) +{ + std::default_random_engine rndEng(randomEngineSeed); + std::normal_distribution<double> normalDist; + + // construct orthonormal system + glm::dvec3 x(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); + double l = glm::length(x); + while(l < myEpsilon<double>()) + x = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); + x = glm::normalize(x); + glm::dvec3 y(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); + l = glm::length(y); + while(l < myEpsilon<double>()) + y = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); + while(glm::abs(glm::dot(x, y)) < myEpsilon<double>()) + { + y = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); + while(l < myEpsilon<double>()) + y = glm::dvec3(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); + } + y = glm::normalize(y); + glm::dvec3 z = glm::normalize(glm::cross(x, y)); + y = glm::normalize(glm::cross(z, x)); + + // generate input point data + std::vector<glm::dvec3> ptData; + static const int pattern[] = { + 8, 0, 0, + 4, 1, 2, + 0, 2, 0, + 0, 0, 4 + }; + glm::dvec3 offset(normalDist(rndEng), normalDist(rndEng), normalDist(rndEng)); + for(int p = 0; p < 4; ++p) + for(int xs = 1; xs >= -1; xs -= 2) + for(int ys = 1; ys >= -1; ys -= 2) + for(int zs = 1; zs >= -1; zs -= 2) + ptData.push_back( + offset + + x * static_cast<double>(pattern[p * 3 + 0] * xs) + + y * static_cast<double>(pattern[p * 3 + 1] * ys) + + z * static_cast<double>(pattern[p * 3 + 2] * zs)); + + // perform PCA: + glm::dvec3 center = computeCenter(ptData); + glm::dmat3 covarMat = glm::computeCovarianceMatrix(ptData.data(), ptData.size(), center); + glm::dvec3 evals; + glm::dmat3 evecs; + int evcnt = glm::findEigenvaluesSymReal(covarMat, evals, evecs); + if(evcnt != 3) + return failReport(__LINE__); + glm::sortEigenvalues(evals, evecs); + + if (!sameSign(evecs[0][0], x[0])) evecs[0] = -evecs[0]; + if(!vectorEpsilonEqual(x, evecs[0], myEpsilon<double>())) + return failReport(__LINE__); + if (!sameSign(evecs[2][0], y[0])) evecs[2] = -evecs[2]; + if (!vectorEpsilonEqual(y, evecs[2], myEpsilon<double>())) + return failReport(__LINE__); + if (!sameSign(evecs[1][0], z[0])) evecs[1] = -evecs[1]; + if (!vectorEpsilonEqual(z, evecs[1], myEpsilon<double>())) + return failReport(__LINE__); + + return 0; +} +#endif // GLM_HAS_CXX11_STL == 1 + +int main() +{ + int error(0); + + // A small smoke test to fail early with most problems + if(smokeTest()) + return failReport(__LINE__); + + // test sorting utility. + if(testEigenvalueSort<2, float, glm::defaultp>() != 0) + error = failReport(__LINE__); + if(testEigenvalueSort<2, double, glm::defaultp>() != 0) + error = failReport(__LINE__); + if(testEigenvalueSort<3, float, glm::defaultp>() != 0) + error = failReport(__LINE__); + if(testEigenvalueSort<3, double, glm::defaultp>() != 0) + error = failReport(__LINE__); + if(testEigenvalueSort<4, float, glm::defaultp>() != 0) + error = failReport(__LINE__); + if(testEigenvalueSort<4, double, glm::defaultp>() != 0) + error = failReport(__LINE__); + if (error != 0) + return error; + + // Note: the random engine uses a fixed seed to create consistent and reproducible test data + // test covariance matrix computation from different data sources + if(testCovar<2, float, glm::defaultp>(100, 12345) != 0) + error = failReport(__LINE__); + if(testCovar<2, double, glm::defaultp>(100, 42) != 0) + error = failReport(__LINE__); + if(testCovar<3, float, glm::defaultp>(100, 2021) != 0) + error = failReport(__LINE__); + if(testCovar<3, double, glm::defaultp>(100, 815) != 0) + error = failReport(__LINE__); + if(testCovar<4, float, glm::defaultp>(100, 3141) != 0) + error = failReport(__LINE__); + if(testCovar<4, double, glm::defaultp>(100, 174) != 0) + error = failReport(__LINE__); + if (error != 0) + return error; + + // test PCA eigen vector reconstruction + // Expected epsilon precision evaluated separately: + // https://github.com/sgrottel/exp-pca-precision + if(testEigenvectors<2, float, glm::defaultp>(0.002f) != 0) + error = failReport(__LINE__); + if(testEigenvectors<2, double, glm::defaultp>(0.00000000001) != 0) + error = failReport(__LINE__); + if(testEigenvectors<3, float, glm::defaultp>(0.00001f) != 0) + error = failReport(__LINE__); + if(testEigenvectors<3, double, glm::defaultp>(0.0000000001) != 0) + error = failReport(__LINE__); + if(testEigenvectors<4, float, glm::defaultp>(0.0001f) != 0) + error = failReport(__LINE__); + if(testEigenvectors<4, double, glm::defaultp>(0.0000001) != 0) + error = failReport(__LINE__); + if(error != 0) + return error; + + // Final tests with randomized data +#if GLM_HAS_CXX11_STL == 1 + if(rndTest(12345) != 0) + error = failReport(__LINE__); + if(rndTest(42) != 0) + error = failReport(__LINE__); + if (error != 0) + return error; +#endif // GLM_HAS_CXX11_STL == 1 + + return error; +} |