aboutsummaryrefslogtreecommitdiff
path: root/3rdparty/glm/source/glm/gtx/pca.hpp
diff options
context:
space:
mode:
Diffstat (limited to '3rdparty/glm/source/glm/gtx/pca.hpp')
-rw-r--r--3rdparty/glm/source/glm/gtx/pca.hpp111
1 files changed, 0 insertions, 111 deletions
diff --git a/3rdparty/glm/source/glm/gtx/pca.hpp b/3rdparty/glm/source/glm/gtx/pca.hpp
deleted file mode 100644
index 93da745..0000000
--- a/3rdparty/glm/source/glm/gtx/pca.hpp
+++ /dev/null
@@ -1,111 +0,0 @@
-/// @ref gtx_pca
-/// @file glm/gtx/pca.hpp
-///
-/// @see core (dependence)
-/// @see ext_scalar_relational (dependence)
-///
-/// @defgroup gtx_pca GLM_GTX_pca
-/// @ingroup gtx
-///
-/// Include <glm/gtx/pca.hpp> to use the features of this extension.
-///
-/// Implements functions required for fundamental 'princple component analysis' in 2D, 3D, and 4D:
-/// 1) Computing a covariance matrics from a list of _relative_ position vectors
-/// 2) Compute the eigenvalues and eigenvectors of the covariance matrics
-/// This is useful, e.g., to compute an object-aligned bounding box from vertices of an object.
-/// https://en.wikipedia.org/wiki/Principal_component_analysis
-///
-/// Example:
-/// ```
-/// std::vector<glm::dvec3> ptData;
-/// // ... fill ptData with some point data, e.g. vertices
-///
-/// glm::dvec3 center = computeCenter(ptData);
-///
-/// glm::dmat3 covarMat = glm::computeCovarianceMatrix(ptData.data(), ptData.size(), center);
-///
-/// glm::dvec3 evals;
-/// glm::dmat3 evecs;
-/// int evcnt = glm::findEigenvaluesSymReal(covarMat, evals, evecs);
-///
-/// if(evcnt != 3)
-/// // ... error handling
-///
-/// glm::sortEigenvalues(evals, evecs);
-///
-/// // ... now evecs[0] points in the direction (symmetric) of the largest spatial distribuion within ptData
-/// ```
-
-#pragma once
-
-// Dependency:
-#include "../glm.hpp"
-#include "../ext/scalar_relational.hpp"
-
-
-#if GLM_MESSAGES == GLM_ENABLE && !defined(GLM_EXT_INCLUDED)
-# ifndef GLM_ENABLE_EXPERIMENTAL
-# pragma message("GLM: GLM_GTX_pca is an experimental extension and may change in the future. Use #define GLM_ENABLE_EXPERIMENTAL before including it, if you really want to use it.")
-# else
-# pragma message("GLM: GLM_GTX_pca extension included")
-# endif
-#endif
-
-namespace glm {
- /// @addtogroup gtx_pca
- /// @{
-
- /// Compute a covariance matrix form an array of relative coordinates `v` (e.g., relative to the center of gravity of the object)
- /// @param v Points to a memory holding `n` times vectors
- template<length_t D, typename T, qualifier Q>
- GLM_INLINE mat<D, D, T, Q> computeCovarianceMatrix(vec<D, T, Q> const* v, size_t n);
-
- /// Compute a covariance matrix form an array of absolute coordinates `v` and a precomputed center of gravity `c`
- /// @param v Points to a memory holding `n` times vectors
- template<length_t D, typename T, qualifier Q>
- GLM_INLINE mat<D, D, T, Q> computeCovarianceMatrix(vec<D, T, Q> const* v, size_t n, vec<D, T, Q> const& c);
-
- /// Compute a covariance matrix form a pair of iterators `b` (begin) and `e` (end) of a container with relative coordinates (e.g., relative to the center of gravity of the object)
- /// Dereferencing an iterator of type I must yield a `vec&lt;D, T, Q%gt;`
- template<length_t D, typename T, qualifier Q, typename I>
- GLM_FUNC_DECL mat<D, D, T, Q> computeCovarianceMatrix(I const& b, I const& e);
-
- /// Compute a covariance matrix form a pair of iterators `b` (begin) and `e` (end) of a container with absolute coordinates and a precomputed center of gravity `c`
- /// Dereferencing an iterator of type I must yield a `vec&lt;D, T, Q%gt;`
- template<length_t D, typename T, qualifier Q, typename I>
- GLM_FUNC_DECL mat<D, D, T, Q> computeCovarianceMatrix(I const& b, I const& e, vec<D, T, Q> const& c);
-
- /// Assuming the provided covariance matrix `covarMat` is symmetric and real-valued, this function find the `D` Eigenvalues of the matrix, and also provides the corresponding Eigenvectors.
- /// Note: the data in `outEigenvalues` and `outEigenvectors` are in matching order, i.e. `outEigenvector[i]` is the Eigenvector of the Eigenvalue `outEigenvalue[i]`.
- /// This is a numeric implementation to find the Eigenvalues, using 'QL decomposition` (variant of QR decomposition: https://en.wikipedia.org/wiki/QR_decomposition).
- /// @param covarMat A symmetric, real-valued covariance matrix, e.g. computed from `computeCovarianceMatrix`.
- /// @param outEigenvalues Vector to receive the found eigenvalues
- /// @param outEigenvectors Matrix to receive the found eigenvectors corresponding to the found eigenvalues, as column vectors
- /// @return The number of eigenvalues found, usually D if the precondition of the covariance matrix is met.
- template<length_t D, typename T, qualifier Q>
- GLM_FUNC_DECL unsigned int findEigenvaluesSymReal
- (
- mat<D, D, T, Q> const& covarMat,
- vec<D, T, Q>& outEigenvalues,
- mat<D, D, T, Q>& outEigenvectors
- );
-
- /// Sorts a group of Eigenvalues&Eigenvectors, for largest Eigenvalue to smallest Eigenvalue.
- /// The data in `outEigenvalues` and `outEigenvectors` are assumed to be matching order, i.e. `outEigenvector[i]` is the Eigenvector of the Eigenvalue `outEigenvalue[i]`.
- template<typename T, qualifier Q>
- GLM_INLINE void sortEigenvalues(vec<2, T, Q>& eigenvalues, mat<2, 2, T, Q>& eigenvectors);
-
- /// Sorts a group of Eigenvalues&Eigenvectors, for largest Eigenvalue to smallest Eigenvalue.
- /// The data in `outEigenvalues` and `outEigenvectors` are assumed to be matching order, i.e. `outEigenvector[i]` is the Eigenvector of the Eigenvalue `outEigenvalue[i]`.
- template<typename T, qualifier Q>
- GLM_INLINE void sortEigenvalues(vec<3, T, Q>& eigenvalues, mat<3, 3, T, Q>& eigenvectors);
-
- /// Sorts a group of Eigenvalues&Eigenvectors, for largest Eigenvalue to smallest Eigenvalue.
- /// The data in `outEigenvalues` and `outEigenvectors` are assumed to be matching order, i.e. `outEigenvector[i]` is the Eigenvector of the Eigenvalue `outEigenvalue[i]`.
- template<typename T, qualifier Q>
- GLM_INLINE void sortEigenvalues(vec<4, T, Q>& eigenvalues, mat<4, 4, T, Q>& eigenvectors);
-
- /// @}
-}//namespace glm
-
-#include "pca.inl"